


Wolfgang Cassing

Theoretical	Physics	Compact	IV
Quantum	Statistics	and	Thermodynamics



Wolfgang Cassing
University of Gießen, Gießen, Hessen, Germany

ISBN 978-3-031-95517-4 e-ISBN 978-3-031-95518-1
https://doi.org/10.1007/978-3-031-95518-1

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2025

This work is subject to copyright. All rights are solely and exclusively
licensed by the Publisher, whether the whole or part of the material is
concerned, speci�ically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on micro�ilms or in
any other physical way, and transmission or information storage and
retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks,
service marks, etc. in this publication does not imply, even in the
absence of a speci�ic statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general
use.

The publisher, the authors and the editors are safe to assume that the
advice and information in this book are believed to be true and accurate
at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the
material contained herein or for any errors or omissions that may have
been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional af�iliations.

This Springer imprint is published by the registered company Springer
Nature Switzerland AG

https://doi.org/10.1007/978-3-031-95518-1


The registered company address is: Gewerbestrasse 11, 6330 Cham,
Switzerland



Dedicated	to	Prof.	Dr.	Achim	Weiguny



Preface
This book provides a textbook on quantum statistics and
thermodynamics and is in particular suited for bachelor students in
their last year of bachelor studies in theoretical physics. Prerequisites
are a knowledge of classical Hamilton dynamics, quantum mechanics
and its formulations in different representations. Elementary
knowledge about electrodynamics is welcome in particular about
elementary electric and magnetic dipoles and their interactions with
external electromagnetic �ields.

Somewhat contrary to standard books about thermodynamics we
will not start with the phenomenological thermodynamics, but directly
from quantum dynamics with the de�inition of the statistical operator
in the many-particle Hilbert space. This opens up the possibility to
de�ine the entropy as the statistical average of the negative logarithm of
the statistical operator and to set up the framework for irreversible
processes in macro-systems even if the basic equations of motion for
elementary particles obey micro-reversibility. Statistical ensembles
then are speci�ied by the postulate of maximum entropy and
microcanonical, canonical, grand-canonical and general ensembles are
de�ined, which depend on the knowledge about energy, particle number
and volume. If some of these quantities are only known on average,
then corresponding Lagrange parameters are introduced, that
guarantee the average values, respectively. These Lagrange parameters
will be related to temperature, chemical potential and pressure later on.

Another important issue of quantum mechanics is the exchange
symmetry of many-body states of identical particles, which has no
counterpart in classical mechanics, i.e. the exchange symmetry with
respect to particle exchange: the wave functions have to be symmetric
or antisymmetric with respect to particle exchange, which leads to the
separation of bosons and fermions with different quantization rules for
the de�inition of creation and annihilation operators. This splitting of
the Hilbert space in bosons and fermions has important consequences
e.g. for the speci�ic heat, the thermal expansion coef�icient and the
single-particle occupation numbers at low temperatures. Only in case of
low densities and/or high temperatures these different quantities



merge to the classical limit. Independently, the different ensembles go
over to the classical distribution functions, if the particle number N
becomes large, since the relative �luctuations in energy and particle
number scale as 1/√N .

In line with the different ensembles thermodynamic potentials are
de�ined as a function of the natural variables and their total
differentials are speci�ied. This leads to a couple of Maxwell relations
that can be employed to compute thermodynamic quantities. The three
laws of thermodynamics are formulated and proven and it is shown
that the classical ideal gas violates the 3rd law of thermodynamics at
low temperatures. Isochoric, isobaric, isothermal and adiabatic changes
of state are discussed and employed for the thermodynamics of the
Carnot cycle and the Otto engine.

Furthermore, small deviations from equilibrium are investigated
and the connection between spontaneous �luctuations of physical
quantities around their average values in statistical equilibrium and
forced deviations from the average values due to disturbances of the
balance by external perturbations. It is shown that these two
phenomena are closely linked for weak external perturbations and �ind
their expression in the �luctuation-dissipation theorem. To this aim we
will introduce the thermodynamic perturbation theory and compute
response functions for various examples like the electric conductivity
or the resistance noise.

The ideal Fermi gas and Bose gas provide important examples for
the different properties of Bose and Fermi systems at low temperatures
and it is shown, that these systems are consistent with the 3rd law of
thermodynamics. The equations of state show important differences in
comparison to the classical limit and the Bose-Einstein condensation—
in case of bosons—is found at low temperatures. As important example
for Bose systems the photon gas in a large container is investigated and
Planck’s radiation law is derived explicitly. Another example are
phonons in solids, which correspond to the quantized vibrations of the
building blocks (atoms or molecules).

Furthermore, the framework for the description of real interacting
systems is presented in terms of the Virial expansion and the resulting
equations of state are derived. In particular the classical Van der Waals
system is investigated as well as ‘nuclear matter’ as an example for an



interacting Fermi system. Both systems are found to show a liquid-gas
phase transition of 1st order.

This volume closes with a derivation of kinetic theories for
interacting Fermi systems, which describe the processes that pave the
way from systems out-off equilibrium to the statistical equilibrium.
This will lead to the Vlasov-Uehling-Uhlenbeck equation for Fermi
systems or the Boltzmann equation in the classical limit. The solution of
these equations can conveniently be achieved within the test-particle
framework.
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Statistical mechanics has the goal to calculate the macroscopic
properties of systems with a lot of particles based on the microscopic
structure of matter. The central point is the concept of the statistical
ensemble: instead of describing the actual system one considers a
large number of copies of this system, which all may be in different
states, but ful�ill the macroscopic conditions (e.g. constant total energy
and/or particle number for a closed system). A statistical ensemble
then is characterized by the probabilities, with which the individual
states (often also called micro-states) are represented in the whole
ensemble, that is characterized by the macroscopic conditions.
Macroscopic properties, that imply a space-time average of an
associated observable, then are understood as average values over the
statistical ensemble. The concept of the statistical ensemble–together
with the classical equations of motion–provides the framework for
classical	statistical	mechanics.

The limits of classical statistical mechanics are reached, if the
particles of the system to be examined must be described in terms of
quantum theory (regardless of whether the system consists of many or
only a few particles), which itself has a probabilistic character. Even
with maximum information about the system, i.e. the knowledge of the
wave function Ψ, we only get probabilistic information about an
ensemble of systems, which are prepared in a similar and complete
way. In this case we denote the system also by a pure	ensemble. Often–
especially in the case of many particles–we don’t know the state of the
system completely, we only know that it is realized with certain

https://doi.org/10.1007/978-3-031-95518-1_1


probabilities pm in the states |Ψm⟩. (Example: probabilities for the two
spin polarizations in a partially polarized beam of free electrons). Such
a mixed	ensemble is described by the statistical	operator 
ρ = ∑m pm|Ψm⟩⟨Ψm|, where |Ψm⟩ denote the different micro-states.
The expectation value of an observable A is obtained by �irst forming
the matrix elements ⟨Ψm|A|Ψm⟩ (quantum	mechanical	average) and
then summing up the values obtained with the weights pm (statistical
average). In this book we will, starting from quantum mechanics,
formulate the quantum statistics and then derive the classical statistical
mechanics and its particular results.

Statistical mechanics can be roughly divided into two areas: the
treatment of statistical	equilibrium (∂ρ/∂t = 0) and the description
of non-equilibrium	phenomena (∂ρ/∂t ≠ 0), especially the
transition into statistical equilibrium. The focus of this book will be on
the treatment of statistical equilibrium and calculation of more
concrete, macroscopic properties such as the speci�ic heat or
susceptibilities. Only towards the end of the book concepts of statistical
mechanics for dynamical systems far from equilibrium are presented
for weakly interacting particles.

The statistical	mechanics provides–in comparison to the
phenomenological	thermodynamics–a signi�icant advantage:
thermodynamics delivers only relations between different macroscopic
quantities, whereas the statistical mechanics allows for the calculation
of macroscopic quantities directly from the underlying microscopic
properties of the system under consideration.
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In this chapter we �irst want to describe systems of identical particles, i.e.
systems that e.g. only contain electrons, only nucleons or only 4He atoms.
More complicated systems, such as a mixture of gases, then can be built up in a
straight forward manner.

2.1	 Concept	of	Identical	Particles
(a)	Classical	mechanics
For the basic comparison between the classical mechanics and quantum
mechanics it is suf�icient to look at two identical particles. We call two particles
identical, if all observables A are symmetric with respect to particle exchange,

(2.1)

In the context of classical mechanics the two identical particles move on
individual trajectories, which are clearly de�ined as long as we know the
symmetric Hamiltonian function,

(2.2)

and the position and momentum of both particles at any time t = t0. The
equations of motion then uniquely provide the trajectories r1(t) and r2(t).
Since they are identical particles it remains initially unclear, which particle is
assigned to which trajectory. But this arbitrariness does not represent any
dif�iculty: if at time t an assignment is made, this is retained in time; each
particle moves on its	own trajectory. In this sense identical particles in
classical mechanics are distinguishable.

(b)	Quantum	mechanics

Acl.(1, 2) = Acl.(2, 1).

Hcl.(1, 2) = Hcl.(2, 1),

https://doi.org/10.1007/978-3-031-95518-1_2


Since in quantum mechanics the concept of a trajectory–due to the
disintegration of wave packets–gets lost, identical particles in quantum theory
are indistinguishable. To examine the consequences of this fact, we note that–
in analogy to classical mechanics–any observable of a system of identical
particles must be symmetric with respect to particle exchange,

(2.3)

otherwise there would be the possibility of differentiation. Here ξ1, ξ2 stand
for the coordinates of the particles under consideration, position, spin, isospin
etc. This also applies to the Hamilton operator:

(2.4)

and with any solution Ψ(ξ1, ξ2;t) of the Schrödinger equation,

(2.5)

also Ψ(ξ2, ξ1;t) is a solution of (2.5). For a system of identical particles–
apart from degeneracies known from the single-particle problem–another
degeneracy appears: the exchange	degeneracy.

Example: For two independent, identical particles–moving in an oscillator
potential–one particle may be in the 1 s—state, the other in the 1p—state. The
wave functions

(2.6)

and

(2.7)

then are degenerate.
Since this exchange degeneracy cannot be clari�ied experimentally, it

destroys the possibility for a unique description of a completely prepared
system by a single Hilbert vector. In order to maintain this fundamental
assumption of quantum theory, one must add another postulate in the case of
identical particles, i.e. the Pauli	principle:

For a system of identical particles only such states can be realized, which
are either totally symmetric or totally antisymmetric with respect to particle

A(ξ1, ξ2) = A(ξ2, ξ1),

H(ξ1, ξ2) = H(ξ2, ξ1),

iħ ∂
∂t

Ψ(ξ1, ξ2;t) = H(ξ1, ξ2)Ψ(ξ1, ξ2;t),

Ψ(ξ1, ξ2) = φ1 s(ξ1)φ1p(ξ2)

Ψ(ξ2, ξ1) = φ1 s(ξ2)φ1p(ξ1)



exchange.

For the case of two identical particles this means, that as possible states
only the combinations

(2.8)

for bosons and

(2.9)

for fermions are acceptable. Such a classi�ication of the possible states of a
system of identical particles in two classes–bosons and fermions–does not
exist in classical mechanics!

The restriction expressed by the Pauli principle of separating the space of
states to totally symmetric or totally antisymmetric states is compatible with
the dynamics, i.e. a symmetric state remains symmetric for all times and an
antisymmetric state remains antisymmetric. From (2.4) follows that

(2.10)

if P12 denotes the particle exchange operator. The eigenstates of H can
therefore always be chosen to be also eigenstates of P12: the equations

(2.11)

(2.12)

can be solved simultaneously. Since twice permutation leads to the initial state

(2.13)

we get for the eigenvalues of P12

(2.14)

Ψs(ξ1, ξ2) = 1
√2

(Ψ(ξ1, ξ2) + Ψ(ξ2, ξ1))

Ψa(ξ1, ξ2) = 1
√2

(Ψ(ξ1, ξ2) − Ψ(ξ2, ξ1))

[H, P12] = 0,

H(ξ1, ξ2)Ψ(ξ1, ξ2) = E Ψ(ξ1, ξ2)

P12Ψ(ξ1, ξ2) = p Ψ(ξ1, ξ2)

P 2
12Ψ(ξ1, ξ2) = P12Ψ(ξ2, ξ1) = Ψ(ξ1, ξ2)

p2 = 1 → p = ±1.



The eigenvalues p = ±1 of P12, which correspond exactly to the only
possible states according to the Pauli principle, are good	quantum	numbers
due to (2.10), i.e. the Pauli principle is compatible with the dynamics of the
system. Even by an external perturbation of the system in the form of a
perturbation H ′ no transition between symmetric and antisymmetric states is
possible, since

(2.15)

and in analogy to (2.4) H ′(ξ1, ξ2) = H ′(ξ2, ξ1) must hold. Thus the
consistency of the Pauli principle and quantum theory is proven.

2.2	 Statistics
The difference in the concept of identical particles in classical mechanics and
quantum mechanics is not an academic one, but rather has severe
consequences, which the following simple example shows explicitly: We
consider a system of two identical particles that can only occupy two single-
particle states: α, β. Then there are the following possibilities:

1.	Classical	particles
Here we can have

(1) both particles in the state α
(2) both particles in the state β
(3) one particle in α, the other in β.
Case (3) can be realized in two ways because the particles can be

distinguished. Therefore the three possibilities–in the statistical average–have
the following weights:

(2.16)

2.	Fermions
Here the options (1) and (2) are forbidden, thus the weight factors are:

(2.17)

⟨Ψs|H ′|Ψa⟩ = ⟨Ψs|P12H ′|Ψa⟩ = ⟨Ψs|H ′P12|Ψa⟩ = −⟨Ψs|H ′|Ψa⟩ = 0,

(1) (2) (3)
1
4

1
4

1
2

(1) (2) (3)

0 0 1



and case (3) is realized by the wave function 
1

√2
(φα(ξ1)φβ(ξ2) − φα(ξ2)φβ(ξ1)).

3.	Bosons
Cases (1) and (2) are possible, but in contrast to classical statistics case (3) can
only be realized in a single way, since the state must be symmetric. Thus the
weight factors and wave functions are:

(2.18)

2.3	 Pauli	Principle	for	N	Identical	Particles
In analogy to the case of two particles we require for N identical particles, that
only such states are possible for which–for any selected particle pair (i, j)–
either

(2.19)

or

(2.20)

This requirement is self-consistent: if for any pair of particles (i, j) holds 
+(−), then also for every other pair of particles in the system under
consideration. If for (1, 2) we have

(2.21)

then we get
(2.22)

1
3 φα(ξ1)φα(ξ2) (1)

1
3 φβ(ξ1)φβ(ξ2) (2)

1
3

1
√2

(φα(ξ1)φβ(ξ2) + φβ(ξ1)φα(ξ2)) (3)

PijΨ(ξ1, . . . . , ξN ) = +Ψ(ξ1, . . . . , ξN )

PijΨ(ξ1, . . . . , ξN ) = −Ψ(ξ1, . . . . , ξN ).

P12Ψ = +Ψ

Pij = P1jP2iP12P1jP2i,



such that

(2.23)

regardless of whether P1j and P2i in the state Ψ have eigenvalue +1 or –1,
since these operators in (2.22) each appear twice.

2.4	 Composite	Particles
All elementary particles–known so far–can be classi�ied as bosons or fermions.
Without exception, bosons have an integer spin, fermions have half-integer
spin.

Examples: Fermions, e.g. electrons, protons, neutrons, neutrinos are spin
1/2 particles, whereas photons, pions, phonons (≡ lattice oscillations in
crystals) are bosons. Atomic nuclei are bosons for an even number of nucleons,
fermions for an odd number of nucleons, provided that an ‘atomic nucleus’ can
be treated as a particle. This is the case in molecular and solid state physics. To
prove these properties of atomic nuclei we consider two identical nuclei with
each Z protons and N neutrons,–i.e. in total 2Z + 2N = 2A particles.
Exchanging the two nuclei then implies exchanging the nucleons of one
nucleus with those of the other, which involves in total A exchanges. Since the
wave function Ψ changes the sign for every single exchange of two fermions,

(2.24)

if ~Π12 is the operator of exchanging the two identical nuclei. The extension to
more than two identical nuclei is trivial; we thus get: nuclei with an even
number of nucleons behave like bosons (e.g. 4He); nuclei with an odd number
of nucleons behave like fermions (e.g. 3He). These properties of composite
particles will be of importance e.g. in the calculation of the speci�ic heat of an
ideal gas of diatomic molecules.

PijΨ = P12Ψ = +Ψ

~
Π12Ψ = (−)AΨ,
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In this chapter we will discuss the difference between micro- and macro-states and
introduce the statistical operator in quantum mechanics. Observables then are
de�ined by matrix elements within the micro-states and by a statistical average
over the ensemble. The differences to the classical density function will be pointed
out explicitly.

3.1	 Micro	and	Macro-States
A system of N identical particles is completely described, if its wave function 
Ψ(ξ1. . . ξN ;t) is known; in classical physics the coordinates qi(t) and momenta 
pi(t) give a complete description. Such a completely determined state we call a
micro-state in the following. It describes–within the framework of quantum
theory–a pure	ensemble (cf. quantum theory). For macroscopic dimensions 
(N ∼ 1023) such a complete description is impossible in practice. We can
characterizee a macroscopic system practically only by macroscopic measurements
such as the total energy E, volume V, temperature T, pressure P etc. Such a state,
that is characterized by a few macroscopic quantities, we denote by macro-state.
The same macro-state can generally be realized by a large number of micro-states.

Example: For three independent, similar oscillators a state with a given total
energy E = ħω(3/2 + 3) = 9/2ħω can be realized in various ways (see Fig. 3.1):

https://doi.org/10.1007/978-3-031-95518-1_3


Fig.	3.1 Possible realizations for a macro-state with energy 9/2ħω and particle number 3 for identical oscillators

or:
three particles with spin 1/2 localized at different points in space

(paramagnetic crystal); depending on the spin position →σ relative to the direction
of an external magnetic �ield B, the magnetic moment can be +μ(−μ). The state
with total magnetic moment −μ can be realized in the following different ways
(see Fig. 3.2). Obviously the number of possibilities increases drastically with N.

Fig.	3.2 Three particles with spin 1/2 localized at different points in space (paramagnetic crystal); depending on
the spin position →σ relative to the direction of an external magnetic �ield, the magnetic moment can be +μ(−μ)

To determine the macroscopic properties of a system of many identical
particles one proceeds as follows in statistical mechanics: Instead of the actual
system (e.g. a gas with N molecules), for which one wants to calculate certain
macroscopic properties (e.g. the speci�ic heat), one considers a large number of
copies of this system, which all can be in different micro-states, that ful�ill the
macroscopically predetermined conditions (e.g. constant total energy for a closed
system). Such a statistical	ensemble is characterized by the distribution of the
individual systems across the possible micro-states. In quantum theory one uses
the statistical	operator ρ (also the term density	operator is common) (cf.
quantum theory), in classical physics the density function ρcl. is used to describe a
statistical ensemble in the 6N-dimensional phase space.

If one knows ρ or ρcl., one can calculate macroscopic properties of the actual
system by averaging over the statistical ensemble. As a measure for the reliability
of such average values one can look for the corresponding mean-square
�luctuations. It will be shown that the relative �luctuations decrease with increasing
particle number N.



Note: The N particles of a system can interact with each other (e.g. the atoms or
molecules of a real gas) or also not (ideal gas). In contrast, the concept of the
statistical ensemble implies that the individual	systems of the ensemble always
are independent of each other.

3.2	 The	Statistical	Operator
If |Ψm⟩ are the possible micro-states and pm the relative probabilities, that the
entire system is in the state |Ψm⟩, then the statistical operator ρ can be written as
(cf. quantum theory)

(3.1)

In the Schrödinger picture |Ψm⟩ and therefore ρ is time-dependent. Let us
write the time evolution of |Ψm⟩ as (with the time-evolution operator U(t, t0)),

(3.2)

then (cf. quantum theory)

(3.3)

or, after differentiation with respect to time t,

(3.4)

Important	special	cases:

1.	Pure	ensembles
If

(3.5)

for a single state |Ψm⟩, we have a pure	ensemble and the maximum possible
information about the system. All systems of the ensemble are located de�initely in
the state |Ψm⟩. In this case we get (with (3.5))

(3.6)

if ρ–as assumed usually–is normalized,

ρ = ∑m pm|Ψm⟩⟨Ψm|with ∑m pm = 1.

|Ψm(t)⟩ = U(t, t0)|Ψm(t0)⟩,

ρ(t) = U(t, t0)ρ(t0)U †(t, t0)

iħ ∂
∂t

ρ = [H, ρ].

ρ =|Ψm⟩⟨Ψm|

ρ2 = ρ



(3.7)

2.	Statistical	equilibrium
Of particular interest in statistical mechanics is the case of statistical

equilibrium de�ined by

(3.8)

It can be realized in two ways, i.e. by

(3.9)

or by

(3.10)

if Q is a conserved quantity; in particular

(3.11)

With (3.4) the stationarity (3.8) follows from (3.9) or (3.10) directly. When
discussing the practically important equilibrium ensembles we will come back to
(3.9) or (3.10).

3.3	 Statistical	Averages
If we know the statistical operator ρ for a system for certain macroscopic
conditions (e.g. �ixed number of particles, constant pressure, ...), the average value
of an observable A in the statistical ensemble is calculated as

(3.12)

= ∑
m

pm⟨Ψm|A|Ψm⟩ = Tr{Aρ}.

Equation (3.12) shows that in the calculation of ⟨A⟩ except for the statistical
averaging

(3.13)

Tr{ρ} = 1, i. e. ∑m pm = 1.

∂
∂t

ρ = 0.

ρ = ρ0 ⋅ 1

ρ = ρ(Q)

ρ = ρ(H).

⟨A⟩ = Tr{ρA} = ∑i,m⟨Ψi|Ψm⟩⟨Ψm|A|Ψi⟩pm = ∑i,m δim pm⟨Ψm|A|Ψi⟩



with

(3.14)

another quantum	mechanical averaging enters in the form of the expectation
value (matrix element) (3.14).

To clarify the difference, let’s compare the statistical average (3.13) for the
statistical ensemble described by (3.1) with the expectation value of A in the pure
state

(3.15)

i.e.

(3.16)

assuming that |Ψ⟩ is normalized,

(3.17)

for orthonormal states |Φm⟩. In contrast to (3.13), where the pm are real, positive
numbers (as probabilities) the coef�icients in (3.16) are complex in general; they
depend on the phases of the coef�icients cm(t).–The expectation value ⟨Ψ|A|Ψ⟩ of
the observable A in total, of course, is real!–Only if the |Φm⟩ are eigenstates of A,

(3.18)

Equation (3.16) achieves the form of a statistical average

(3.19)

The form (3.19) for the expectation value of an observable A is the starting point
for a statistical interpretation of quantum mechanics (see quantum theory).

In order to avoid misunderstandings, let’s stress again: a statistical (or mixed)
ensemble ρ is described by the real	numbers	pm, which are the speci�ic
probabilities, that the state |Ψm⟩ is realized in the ensemble; on the other hand, a
pure state |Ψ⟩ is characterized by its complex	expansion	coef�icients cm(t) in an
orthonormal basis |Φm⟩. While in a pure state–due to phase relationships (given by
the complex numbers cm(t))–an interference between the |Φm⟩ is possible (cf.
(3.16)!), this is not possible for a mixed	ensemble as shown by Eq. (3.12). In other

⟨A⟩ = ∑m pmAm

Am = ⟨Ψm|A|Ψm⟩

|Ψ(t)⟩ = ∑m cm(t)|Φm⟩,

⟨Ψ|A|Ψ⟩ = ∑m,n c
∗
mcn⟨Φm|A|Φn⟩,

∑m |cm|
2

= 1,

A|Φm⟩ = am|Φm⟩,

⟨Ψ|A|Ψ⟩ = ∑m |cm|2
am.



words: a statistical ensemble is described by an incoherent	superposition of
states, a pure state by a coherent	superposition.

The statistical average ⟨A⟩, of course, must be independent of the basis in
which the trace (Tr) is taken. This is the case indeed: we expand |Ψi⟩ in a complete
orthonormal basis |Φν⟩,

(3.20)

and due to the unitarity of the matrix aiν ,

(3.21)

= ∑
μν

δμν⟨Φμ|ρA|Φν⟩ = ∑
μ

⟨Φμ|ρA|Φμ⟩.

For the stationary ensembles de�ined in (3.8) the statistical averages are (as
expected) independent of time t, since–according to (3.8)–ρ does not depend on t
in the statistical equilibrium. Observables are time-independent in the Schrödinger
picture (see quantum mechanics) and the trace formation we can consider to be
carried out in the basis of stationary states to the Hamilton operator H of the
system.

3.4	 The	Classical	Density	Function	ρcl
We now want to brie�ly describe the classical description of a statistical ensemble
and clarify the analogy to quantum statistics.

A classical mechanical system is completely described by specifying the
position and momentum coordinates of the particles as a function of time,

(3.22)

In the 6N—dimensional space of the coordinates qi, pi (phase	space) the N
particle system for each point in time t is represented by a dot. The system moves
in time–characterized by the point in phase space–according to the Hamilton
equations of motion

(3.23)

with Hcl. = Hcl.(qi, pi) as a Hamilton function, on a trajectory through the phase
space (see Fig. 3.3).

|Ψi⟩ = ∑ν aiν|Φν⟩,

∑i⟨Ψi|ρA|Ψi⟩ = ∑μν (∑i a
∗
iμaiν)⟨Φμ|ρA|Φν⟩

{qi(t), pi(t)}; i = 1, . . . , 3N .

ṗi = − ∂
∂qi

Hcl.;q̇i = ∂
∂pi

Hcl.



Fig.	3.3 Trajectory in phase space; P(t) ≡ state of the system considered at time t

We then describe a statistical ensemble of systems using the density function 
ρcl. = ρcl.(qi, pi;t) in phase space, which is the probability to �ind the phase point 
{qi, pi} in the entire ensemble at time t (see Fig. 3.4).

Fig.	3.4 Snapshot of an entire system in phase space for M = 7

Since the number of the systems in the ensemble M is �ixed, we can normalize 
ρcl. such that

(3.24)

We now examine the time evolution of ρcl.. Since the total number of systems of the
ensemble is �ixed, the number of phase points, that leave a certain volume in phase
space per time, must be equal to the decrease in phase points in this volume. We
formulate this conservation	law (approximately in analogy to the conservation of
charge) in the form of a continuity equation in 6N dimensions,

(3.25)

∫ ∏3N
i=1 dqidpi ρcl.(qi, pi;t) = 1.



with

(3.26)

(3.27)

Equation (3.25) can be converted into a compact form, which clearly expresses the
analogy between the classical distribution function ρcl. and the statistical operator 
ρ. To this aim we transform to

(3.28)

= ∑
i

( ∂ρcl.
∂qi

q̇i +
∂ρcl.
∂pi

ṗi) +∑
i

ρcl.(
∂ṗi
∂pi

+
∂q̇i
∂qi

)

and note that the last term in (3.28) vanishes due to the Hamilton equations of
motion. Equation (3.25) then reads

(3.29)

from which–with the help of (3.23) and the de�inition of the Poisson brackets–we
obtain:

(3.30)

Equation (3.30) corresponds to Eq. (3.4) and is denoted by the Liouville
equation.

A classical statistical ensemble is in statistical equilibrium if

(3.31)

This case can be realized in two ways, i.e.:
(3.32)

∂
∂t ρcl. + div(ρcl.vcl.) = 0,

vcl. =: (q̇i, ṗi),

div =: ( ∂
∂qi

, ∂
∂pi
).

div(ρcl.vcl.) = ∑3N
i=1( ∂

∂qi
(ρcl.q̇i) + ∂

∂pi
(ρcl.ṗi))

∂
∂t ρcl. + ∑i

∂ρcl.
∂qi

q̇i + ∑i
∂ρcl.
∂pi

ṗi = 0,

∂
∂t ρcl. = {Hcl., ρcl.}.

∂
∂t ρcl. = 0.



or by

(3.33)

if Qcl. is a conserved quantity. In the case of (3.32) Eq. (3.31) is satis�ied
trivially; in case of (3.33) it follows for a conserved quantity Qcl.

(3.34)

From (3.33) (together with (3.29)) we obtain:

(3.35)

With the normalization (3.24) we get as average value for an observable Acl. in an
ensemble described by ρcl.

(3.36)

3.5	 Summary
The fundamental tasks of statistical mechanics are:

1.	Determination	of ρ or ρcl. in dependence of the system considered with the
respective macroscopic conditions. We will discuss this point for the case of
statistical equilibrium in Chap. 5.

2.	Calculation	of	macroscopic	properties for known ρ or ρcl..
For quantities that correspond to observables in quantum theory, represented

by a self-adjoint operator, we use the method of averaging from Sect. 3.3. The
internal energy U of a system e.g. we calculate as

(3.37)

where H is the Hamiltonian of the system, or for the magnetization

(3.38)

ρcl.(qi, pi;t) = const.

ρcl. = ρcl.(Qcl.),

d
dt
Qcl. = ∑i(

∂Qcl.

∂qi
q̇i + ∂Qcl.

∂pi
ṗi) = 0.

∂
∂t ρcl. = −

dρcl.
dQcl.

∑i(
∂Qcl.

∂qi
q̇i + ∂Qcl.

∂pi
ṗi) = 0, q. e. d.

⟨Acl.⟩ = ∫ ∏3N
i=1 dqidpi ρcl.(qi, pi;t)Acl.(qi, pi).

U = Tr{ρH},

⟨
→
M⟩ = Tr{ρ

→
μ}.



The second class of macroscopic quantities are parameters such as volume,
external �ields (here we address macroscopic, classical �ields), spatial position of
the macroscopic system etc.; for such parameters we assume that they can be
determined with arbitrary accuracy. The two most important parameters—
volume, external �ields—turn to parameters of the wave function; examples:
normalization volume V, magnetic �ield B. Finally, there are quantities in the
context of thermodynamics, that are not found in classical mechanics but occur in
quantum theory, e.g. entropy S, temperature T, chemical	potential μ etc.

In summarizing this chapter we have discussed the difference between micro-
and macro-states and introduced the statistical operator in quantum mechanics.
Observables have been de�ined by matrix-elements within the micro-states and by
a statistical average over the ensemble. The differences to the classical density
function have been be pointed out and discussed in detail.
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In this chapter we will introduce the entropy S as a measure for missing information. It will
turn out that the entropy S can strictly be de�ined in quantum mechanics by the average of
the negative logarithm of the statistical operator ρ. When restricting to the diagonal
elements of the statistical operator in some approximate basis, it can be shown that the
entropy increases in time, i.e. S(t) ≥ S(0) for t > 0. Furthermore, the difference between
micro-reversibility and macro-irreversibility will be discussed and the general postulates of
statistical mechanics be formulated.

4.1	 Entropy	as	a	Measure	for	Missing	Information
Statistics are used when, despite incomplete information about a system of macroscopic
dimension, one wants to make statements about macroscopic properties. It therefore makes
sense to look for a quantitative measure for information.

About an object of our interest (e.g. the weather situation) we gain information in the
form of news (wind strength, air temperature, etc.). If a message is less likely, the larger is
the gain of information, if one actually receives this message. In particular a message, that is
certainly expected, provides no information. If the probability to receive a message i is pi 
(0 ≤ pi ≤ 1), then the information I (≥ 0), which we obtain by receiving the message i, will
increase with decreasing pi. In	formulae:

(4.1)

and

(4.2)

The concrete form of the function I(pi) results from the plausible assumption, that the
information	is	additive	for	independent	messages. If pi, pj are the probabilities of
independent messages i, j, then the probability of receiving both messages is the product 
pipj. The additivity	of	information then states

(4.3)

I(pi) = 0 if pi = 1

I(pi) ≥ I(p′
i) if pi ≤ p′

i.

I(pipj) = I(pi) + I(pj).
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The solution of the Eqs. (4.1)–(4.3) is

(4.4)

with C > 0 as a constant and 0 ≤ pi ≤ 1.
After these preliminary remarks about the basics of information theory we consider a

statistical ensemble, where the micro-states |Ψi⟩ are realized with the probabilities pi. If we
perform a complete measurement on an arbitrarily selected system of the ensemble and �ind
out that it is in the state |Ψi⟩, then we gain an information proportional to ln pi; vice versa
we can view ln pi as a measure for our lack of information, if we do not carry out this
measurement (which we neither can nor want to do in practice, see introduction). The
missing	information with respect to the system under consideration we then can measure
by the statistical average

(4.5)

The quantity S introduced here will turn out to be the entropy	of	the	system; kB is the
Boltzmann constant.

In the case of a pure ensemble in the state |Ψm⟩,

(4.6)

obviously S = 0. This is reasonable: if we already know for sure, that the system is in the
state |Ψm⟩, then a con�irmation of this fact by a measurement gives no gain in information.

For the following considerations it is useful to express S by the statistical operator ρ. We
claim that

(4.7)

Proof

(4.8)

since the states |Ψi⟩ are eigenstates to ρ with the eigenvalues pi:

(4.9)

According to (4.7) the entropy	 S is	the	statistical	average	of	the	quantum
operator −kB ln ρ.

4.2	 A	Simple	Example

I(pi) = −C ln pi

S = −kB∑i pi ln pi.

pi = 1 if i = m; pi = 0 else,

S = −kBTr{ρ ln ρ} = −kB ⟨ln ρ⟩.

Tr{ρ ln ρ} = ∑i,m⟨Ψi|Ψm⟩⟨Ψm|ln ρ|Ψi⟩pm = ∑i pi⟨Ψi|ln ρ|Ψi⟩ = ∑i pi ln pi,

ρ|Ψi⟩ = ∑m pm|Ψm⟩⟨Ψm|Ψi⟩ = ∑m pm|Ψm⟩δmi = pi|Ψi⟩.



Let three particles with spin 1/2ħ be localized at different points in space; there is no
interaction between the particles. Depending on the spin orientation there are magnetic
moments ±μ of a single particle in a constant homogeneous magnetic �ield B. Then 23 = 8
micro-states are possible, whose properties are summarized in the table:

(4.10)

We now want to calculate the entropy of the system according to (4.5) for the following
cases:

1. If we have no further information about the system, all micro-states have the same
probability (least	bias	assumption). Then

(4.11)

such that

(4.12)

2. It is known that E = μB for the total system; this can only be realized by 3 micro-states,
which in turn have equal probability. Thus

(4.13)

such that

(4.14)

3. It is known that the total energy is E = −3 μB; this situation can only be realized in a
single way; thus we have a complete knowledge about the system. The entropy is

(4.15)

as expected.

4.3	 Temporal	Change	in	Entropy
The de�inition of S by (4.5) shows that S is constant in time, since the numbers pm (from the
concept of a statistical ensemble) do not depend on t. If we want to interpret S as entropy,
our theory so far is limited to reversible processes or the description of equilibrium states;
irreversible	processes	are	associated	with	a	change	in	entropy. That we cannot describe
irreversible processes within the framework of the previous theory is not surprising: the
classical equations of motion for a closed system are invariant with respect to time reversal,
i.e. for every solution {qi(t), pi(t)} also {qi(−t), −pi(−t)} are a possible solution of the

.

number of micro − states total moment total energy

1 3μ −3μB

3 μ −μB

3 −μ μB

1 −3μ 3μB

pi = 1
8

∀i,

S = −kB ln 1
8

= kB ln 8.

pi = 1
3 ; i = 1, 2, 3 ,

S = −kB ln 1
3 = kB ln 3.

S = −kB ln 1 = 0



equations of motion; a corresponding statement holds in quantum theory for the solutions
of the Schrödinger equation (see Sect. 4.4). The Eqs. (3. 4) and (3. 30) for the temporal
behavior of ρ  or ρcl. are a direct and exact consequence of the Schrödinger equation or the
equations of motion, such that by the introduction of the statistical operator ρ (3. 1) or the
density function ρcl. (3. 24) the time reversal invariance is not destroyed! Our theory
therefore has no place for irreversible processes in its current form.

We want to show in the following, how the previous concept has	to	be	extended	to
include	irreversible	processes. If our identi�ication of entropy and lack of information is
correct, then the extended theory must include the possibility, that information is lost in
time; this then will correspond to an increase	in	entropy. Thus we are looking for a worse
theory than the previous one, which is based on the statistical operator ρ and in turn is
worse than the exact description of a system by its wave function |Ψ(ξ1. . . ξN ;t)⟩. If the
knowledge of ρ–for building a statistical justi�ication of thermodynamics–is too good, then it
makes sense to assume, that only the expectation	value	of	the	statistical	operator	in
some	basis is known. To carry out this idea quantitatively we transform the spectral
representation (cf. quantum theory) of the statistical operator (using the micro-states |Ψi⟩),

(4.16)

to a representation in a �ixed, orthonormalized and complete basis |Φα⟩, in which ρ is no
longer diagonal:

(4.17)

The coef�icients ραβ then are the matrix elements of ρ in the basis |Φα⟩,

(4.18)

If we only have knowledge about the diagonal elements in the basis |Φα⟩. i.e. ραα, this is
obviously less knowledge than that provided by (4.16).

We now want to investigate the time evolution of the coef�icients ραβ which, in contrast
to the pi, generally depend on t. We go back to (3. 4) and form the matrix elements in the
basis |Φα⟩ :

(4.19)

with

(4.20)

Here the completeness relation was used:

(4.21)

ρ = ∑i pi|Ψi⟩⟨Ψi|,

ρ = ∑
αβ

ραβ|Φα⟩⟨Φβ|.

ραβ = ⟨Φα|ρ|Φβ⟩.

iħ ∂
∂t ραβ = ∑γ(Hαγργβ − ραγHγβ)

Hαγ =: ⟨Φα|H|Φγ⟩.

∑γ |Φγ⟩⟨Φγ|= 1H ,



where 1H  denotes the identity in the Hilbert space. Alternatively, we can use (3. 3) and �ind
the formal solution from (4.19)

(4.22)

with

(4.23)

Since (4.19) and (4.22) are exact transformations of (3. 3) and (3. 4), we have lost no
information compared to (3. 3) or (3. 4); the entropy S calculated with (4.22) is still constant
in time.

Note: In general we have

(4.24)

with the exception that ρ is diagonal in the basis |Φα⟩.
We now want to consider the case, that the statistical ensemble is not de�ined by the

eigenvalues pi of ρ, but only by the diagonal elements of ρ in the basis |Φα⟩. It will turn out
that this	reduced	information	is	not	constant	in	time,	but	decreases	with	time t. To
calculate the time evolution of the diagonal elements we use (cf. (4.19) or (4.22))

(4.25)

or

(4.26)

Obviously, the knowledge of ραα(0) is not suf�icient as initial information to determine 
ραα(t) exactly in time. A theory that only employs the diagonal elements of ρ has to
introduce approximations with respect to the off-diagonal elements.

In	statistical	mechanics,	the	assumption	is	made	ad	hoc	that	due	to	statistically
distributed	phases	the	effect	of	the	off-diagonal	elements	is	averaged	out	in (4.25)
or (4.26).

This assumption has the character of a fundamental postulate and can only be
con�irmed by experiment or be refused. As starting information one uses the approximation

(4.27)

and then formally obtains Pα(t) from
(4.28)

ραβ(t) = ∑γδ Uαγ(t)ργδ(0)U ∗
βδ(t)

Uαγ(t) =: ⟨Φα|U(t, 0)|Φγ⟩.

∑α (ρ ln ρ)αα ≠ ∑α ραα ln (ραα)

iħ ∂
∂t ραα(t) = ∑γ(Hαγργα(t) − ραγ(t)Hγα)

ραα(t) = ∑γδ Uαγ(t)ργδ(0)U ∗
αδ

(t) = ∑γ |Uαγ|2
ργγ(0) +∑γ≠δ Uαγ(t)ργδ(0)U ∗

αδ
(t).

ραβ(0) = Pα(0)δαβ

Pα(t) = ∑γ |Uαγ(t)|2
Pγ(0).



The quantities Pα(t) determine approximately the probabilities to �ind the systems of the
statistical ensemble in the states |Φα⟩ at time t. This leads to the missing information

(4.29)

which depends on time. We now want to show that–using the approximation (4.28)–that
S(t) actually increases with t. To this aim we use the inequality

(4.30)

for real, non-negative x, y, which is based on the fact that ln x is a monotonically
increasing function. For our problem we have

(4.31)

We multiply Eq. (4.31) by |Uαγ(t)|2, sum over α, γ and note

(4.32)

as a result of the unitarity of the time evolution operator. Using in the 2. term of (4.31)–after
carrying out the operations above in the fundamental Eq. (4.28)–we obtain directly:

(4.33)

Since the normalization of the probabilities requires

(4.34)

we get

(4.35)

thus with (4.29)

(4.36)

This provides the framework for the statistical	mechanics	of	irreversible	processes.
After having formally clari�ied the possibility of decreasing information in time (increase

of entropy), the question about the physical background comes up. Why is our information
so bad in practice such that irreversible processes can occur? We point out the following
reasons:

S(t) = −kb∑α Pα(t) ln Pα(t),

x ln x − x ln y − x + y ≥ 0

Pγ(0) ln Pγ(0) − Pγ(0) ln Pα(t) − Pγ(0) + Pα(t) ≥ 0.

∑α U
∗
αμUαν = ∑α UμαUαν = δμν

∑γ Pγ(0) ln Pγ(0) −∑α Pα(t) ln Pα(t) −∑γ Pγ(0) +∑α Pα(t) ≥ 0.

∑γ Pγ(0) = ∑α Pα(t),

∑γ Pγ(0) ln Pγ(0) ≥ ∑α Pα(t) ln Pα(t);

S(0) ≤ S(t).



1. Closed systems cannot be realised in practice in the strict sense, since some (albeit
small) interaction W with the environment is unavoidable. Such an interaction is even
necessary in the case of thermal	contact! Although we never know this interaction exactly,
we know the Hamiltonian of the system only approximate; that’s why the micro-states are
only de�ined approximately. In	the	basis	of	the	approximate	micro-states	the	full
statistical	operator	is	not	diagonal! The knowledge of the probability distribution of the
systems of the ensemble in the approximate micro-states at time t = 0–as proven above–
gets lost in time.

2. Even with the complete knowledge of the Hamiltonian we must expect, that every
measurement is subject to inaccuracies, such that we can never know the statistical operator
ρ exactly. Apart from practical reasons (which we could eliminate in the thought
experiment) fundamental principles of quantum theory are responsible for this: the fact that
in quantum theory the detection device in�luences the measured object, and especially that
the exact determination of the energy of a system would take a ∞− long time according to
the uncertainty principle. These errors due to inaccuracies of measurements–regarding the
determination of ρ–grow according to the general considerations above in time: our
information deteriorates, i.e. the entropy increases.

4.4	 Micro-Reversibility	and	Macro-Irreversibility
First of all, the micro-reversibility mentioned above needs to be formulated more precisely.
For closed systems the equations of motion

(4.37)

are invariant with respect to the operation

(4.38)

Thus if qi(t), pi(t) is a solution of (4.37), then also the set qi(−t), −pi(−t), which emerge
from the former by the operation (4.38). Time reversal means that the orbits are passed in
opposite directions.

In quantum theory, the equations of motion (4.37) are replaced by the Schrödinger
equation

(4.39)

For simplicity we assume particles without spin, such that the coordinates ξi correspond to
the position coordinates of the particles. The correspondence between classical observables
and observables in quantum theory now requires that, when reversing the time, the position
coordinates ri and the momenta pi transform according to

(4.40)

Since the Hamilton operator H for a closed system only depends on the ri and the pi

(squared!), but not on t, H is invariant under time reversal. If we transform the Schrödinger
Eq. (4.39) by the operation (4.38) we get

(4.41)

mi
d2

dt2 qi = Fi

t → t′ = −t.

iħ ∂
∂t Ψ(ξ1. . . ξN ;t) = H Ψ(ξ1. . . ξN ;t).

ri → ri; pi → −pi.



and obtain after complex conjugation,

(4.42)

the Schrödinger equation for the functions Ψ∗(r1. . . rN ;t′). Thus, if Ψ is a solution of (4.39)
in the t system, then Ψ∗ is a solution in the t′ system.

Example: plane wave in +k  or −k direction.
The statement proven above (which in analogy is valid for particles with spin), that for

every motion sequence, that results from the equations of motion or the Schrödinger
equation, the time-reversed motion sequence is also possible. This is called micro-
reversibility. At �irst glance this seems to contradict the macro-irreversibility formulated
in Eq. (4.36), by which a time direction is preferred. The apparent contradiction between
micro-reversibility and macro-irreversibility, however, can be solved by considering the
following points:

1. The quantity S was introduced as a statistical average. The statement (4.36)
therefore only has the character of a probability	statement: The most probable time
evolution of a macroscopic system (in the absence of external �ields) is characterized by
an increase in S(t); nevertheless, processes are possible in which S(t) decreases, since S is
subject to statistical �luctuations.

2. Micro-reversibility is a statement about pure states and requires the exact
knowledge of the Hamilton operator and the initial conditions. Macro-irreversibility is a
statement about the behavior of a system, which we only know incompletely and whose
properties we use as average values of a statistical ensemble. Both statements are
therefore related to different situations.

To illustrate points (1.) and (2.), we consider the following example: A given container is
divides into two equal parts separated by a wall; there is a small hole in the wall (see
Fig. 4.1), which can be closed with a slider. The initial situation is characterized by a gas with
the pressure PI  in area I, while area II is empty. If the slider is opened, the pressure in area I
decreases and increases in area II until statistical equilibrium has been established with 
PI = PII . The �inal situation is different from the initial situation because our information
has become less precise, the entropy according to (4.36) has increased. This does not
exclude that in the course of pressure equilibration–for a short time–more gas molecules �ly
from II back to I than vice versa due to statistical �luctuations! The reversed process, starting
from PI = PII ≠ 0 to PII = 0, PI ≠ 0 is possible in principle, but extremely unlikely since
it is practically impossible to determine the positions and momenta of N gas molecules—in
the sense of an initial condition for solving the equations of motion—to be adjusted such
that there is a pressure difference between areas I and II and in the �inal state area II is
empty.

−iħ ∂
∂t′ Ψ(r1. . . rN ;t′) = H Ψ(r1. . . rN ;t′);

iħ ∂
∂t′ Ψ∗(r1. . . rN ;t′) = H Ψ∗(r1. . . rN ;t′),



Fig.	4.1 Illustration of a container, which is divided into two equal parts by a wall with a small hole

This example shows that irreversibility is closely linked to the existence of many
particles: For example, for N = 2 the process of pressure	equalization is just as easy to
prepare for both initial conditions (see Fig. 4.2).

Fig.	4.2 For a few particles the process of pressure equilibration is just as easy to prepare as the reversed process

3. Finally, it should be noted that quantum theory—regardless of the time-reversal
invariance of the Schrödinger equation—implicitly does not contain the equivalence of the
two time directions. This non-equivalence can be shown in connection with the fundamental
process of the interaction of a quantum mechanical system (e.g.. H atom) with a classical
system (e.g. detector for excitation energies). If two such processes A and B take place one
after the other (example: collisions of gas molecules with the walls of the container), the two
time directions are no longer equivalent: the claim that the probability of a certain result for
process B, which is in�luenced by the result of the process A, is only correct if A takes place
before B. This is probably the key to a deeper understanding of the increase in entropy in the
absence of external organizing �ields.

4.5	 The	Postulates	of	Statistical	Mechanics
The concept of a statistical ensemble and the de�inition of entropy (as lack of information)
provide a suf�icient basis for statistical mechanics, including the possibility of irreversible
processes. However, this framework is only of practical use if (for a system of N particles
with given macroscopic conditions) one can specify the probabilities, with which the
members of the statistical ensemble are distributed with respect to the micro-states |Ψm⟩.
Since the knowledge of a few macroscopic data in general not clearly determines the
statistical ensemble, we have to introduce postulates into the theory, that allow for a
determination of the probabilities mentioned above. We will try to do this within the
framework of the principle	of	least	bias to exploit all available information about the
system: The	whole	truth,	and	nothing	but	the	truth. The available macroscopic
information we can employ in the form of statistical averages

(4.43)⟨Ri⟩ = ri, i = 1, 2, 3, . . ,n.



Here, Eq. (4.43) includes both the average values of observables ⟨A⟩ as well as their average
quadratic �luctuations ⟨ΔA2⟩.

We now introduce the fundamental postulates of statistical mechanics:

Postulate	I

All	states	|Φα⟩ of	a	complete,	orthonormalized	basis	have	the	same	‘a	priori’
probability.

This implies that quantum theory has no tendency to prefer certain states (e.g. those
that are energetically close to each other) compared to others (that are less energetically
close). Differences in the probability distributions only emerge by macroscopic conditions
imposed on the system. Postulate I in particular implies total	ignorance about the state of
the system; all micro-states are represented with equal probability in the ensemble.

In classical physics, postulate I can be formulated in such a way that the same volumes in
phase space have the same ‘a priori’ probabilities.

Since the available macroscopic information in general does not determine the statistical
operator ρ suf�iciently, we need a criterion that distinguishes between different ρ′s, which
all satisfy the macroscopic conditions, in order to make a selection. As a criterion we use the
missing information S :  If for two statistical operators ρ1 ≠ ρ2, which both satisfy the
macroscopic conditions, S1 > S2 holds, then ρ2 contains additional information compared
to ρ1, which is not secured by measurement. Thus we favor ρ1 for making the theory as good
as possible by keeping it free from arbitrary (not controlled) assumptions. This results in

Postulate	II

To	the	physical	system	under	consideration	we	assign	the	statistical	operator	ρ, that
satis�ies	the	macroscopic	conditions	and	maximizes	the	missing	information
(entropy).

In summarizing this chapter we have introduced the entropy S as a measure for missing
information. The latter could strictly be de�ined in quantum mechanics by the average of the
negative logarithm of the statistical operator. When restricting to the diagonal elements of
the statistical operator in some approximate basis, it was shown that the entropy increases
in time, i.e. S(t) ≥ S(0) for t > 0 or our information about a system decreases in time.
Furthermore, the difference between micro-reversibility and macro-irreversibility has been
discussed and the general postulates of statistical mechanics been formulated.

We now want to use postulates I and II to investigate the statistical ensembles in
equilibrium for different macroscopic conditions.
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In this chapter we will investigate different statistical ensembles, that are characterized by
the knowledge of the energy E, the particle number N and the volume V. If these quantities
are only known on average some Lagrange parameters have to be introduced, which later
will be related to the temperature, the chemical potential and the pressure.

5.1	 The	Uniform	Ensemble
It is de�ined by (ρ0 = const.)

(5.1)

or

(5.2)

and according to Sect. 4. 2 is in statistical equilibrium. Equations (5.1) or (5.2) correspond to
the case of total	ignorance (here ignorance refers to the state of the system, not the
properties of the particles): all states are equally likely. Obviously

(5.3)

A total ignorance cannot increase in time. Fortunately this case is very rare; the following
case is met more often.

5.2	 The	Microcanonical	Ensemble
About an isolated system we know that it has sharp energy E, precise volume V and sharp
particle number N; we denote the micro-states by |Ψi⟩;i = 1, 2, . . . zm, that are compatible
with E, V and N. Then the statistical operator has the form

(5.4)

and the task remains to �ind the coef�icients pi. To this aim we use the principle (see Sect. 4. 
5) that the missing information should be maximum. Therefore the variational problem

(5.5)

ρ = ρ0 ⋅ 1

ραβ = ρ0δαβ

S = const;

ρ = ∑zm

i=1 pi|Ψi⟩⟨Ψi|

δS = 0
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with the constraint

(5.6)

the normalization of ρ, has to be solved. Equations (5.5) and (5.6) are equivalent to

(5.7)

one has vary with respect to the pi while λ is a constant (Lagrange parameter) to be
determined later. With ρ from (5.4) we get

(5.8)

and

(5.9)

Then (5.7) reads:

(5.10)

The solution is

(5.11)

and the pj itself is a constant.
The still free quantity λ now can be determined such that the normalization (5.6) is

satis�ied; this gives:

(5.12)

The result implies an equal distribution in the possible micro-states in accordance with
the principle of equal ‘a priori’ probabilities (see Sect. 4. 5). For the entropy S we get

(5.13)

Equation (5.13) is often used as a de�inition of entropy, where zm is nothing else than the
number of possible realizations of the macro-state. However, it should have become clear
that S from (5.13) refers to the case of statistical equilibrium; as a general de�inition for the
entropy (5.13) is too narrow because it does not cover irreversible processes.

The quantity Zm, de�ined by

Tr(ρ) − 1 = 0,

δ(S − λ[Tr(ρ) − 1]) = 0;

Tr(ρ) = ∑k⟨Ψk|ρ|Ψk⟩ = ∑k⟨Ψk|∑
zm

i=1 pi|Ψi⟩⟨Ψi|Ψk⟩ = ∑
zm

i=1 pi

S = −kB ∑
zm

i=1 pi ln pi.

∂
∂pj

(kB ∑i pi ln pi + λ∑i pi − λ) = kB ln pj + kB + λ = 0.

ln pj = − λ
kB

− 1 = const

pj = 1
zm

→ ∑
zm

j=1 pj = 1.

S = −kB ∑
zm

i
1

zm
ln ( 1

zm
) = kB ln (zm)∑zm

i
1

zm
= kB ln (zm).



(5.14)

is also denoted as microcanonical	partition	function. In (5.14) Π(E, V , N) denotes the
projector on the subspace of states that have given sharp E, V, N. According to (5.13), S also
becomes a function (via Zm) of E, V, N : 

(5.15)

Since exact energy measurements are practically impossible within a �inite time interval
due to the uncertainty relation, it is useful to de�ine a softened microcanonical ensemble. We
replace (5.12) by

(5.16)

pj = 0else,

where zm is the number of micro-states lying between E − δE and E + δE. Here δE has
to be chosen larger than the experimental energy uncertainty, but small compared to the
total energy E.

5.3	 The	Canonical	Ensemble
In contrast to Sect. 5.2 we no longer require, that all systems have the same constant energy
E, but only prescribe the internal energy U as an average:

(5.17)

This corresponds to the situation that often occurs in practice, since the system under
consideration has a weak interaction W with its environment. Then the energy of the system
is no exact constant of motion; this comes about since by interactions with the environment
the internal energy is subject to �luctuations. We can account for this situation by
incorporating the condition (5.17) in the calculation of the statistical equilibrium. In the
statistical equilibrium ρ has the general form

(5.18)

with

(5.19)

Zm = ∑zm

j=1 1 = Tr(Π(E, V , N)),

S = S(E, V , N).

pj = 1
zm

if E − δE < Ej < E + δE

U = Tr(ρH) = const.

ρ = ∑i pi|Ψi⟩⟨Ψi|

H|Ψi⟩ = Ei|Ψi⟩.



Our task now is to calculate the numbers pi in (5.18).
To this aim we use postulate II: We solve the variational problem

(5.20)

with

(5.21)

and the two constraints

(5.22)

and

(5.23)

This leads to:

(5.24)

where β and λ are Lagrange parameters and ∑i is to extend over all states |Ψi⟩ that have
the same volume V and �ixed particle number N. Variation of the pi gives (in analogy to case
2):

(5.25)

such that

(5.26)

The λ parameter has to be chosen such that ∑j pj = 1, i.e.

(5.27)

where Zc is the canonical	partition	function:

(5.28)

With the help of Zc we can now express U and S:

δS = 0

S = −kB Tr(ρ ln ρ)

Tr(ρ) − 1 = 0

Tr(ρH) − U = 0.

δ(−kB ∑i pi ln pi − kBβ(∑i piEi − U) − λ(∑i pi − 1)) = 0,

ln pj = −βEj − λ
kB

− 1,

pj = const ⋅ exp (−βEj).

pj = 1
Zc

exp (−βEj),

Zc = ∑i exp (−βEi).



(5.29)

and (with ln pm = − ln Zc − βEm)

(5.30)

= kB(ln Zc + βU) = kB(ln Zc − β
∂

∂β
ln Zc).

We will come back to these relationships in Chap. 7, where we will consider the
connection between thermodynamics and statistical mechanics. This will show that β is
directly connected with the temperature T via T ∼ 1/β.

As another practically important equilibrium ensemble we discuss the grand-canonical
ensemble.

5.4	 Grand-Canonical	Ensemble
We want to investigate a system, that not only exchanges energy with the environment (as in
case 3), but also particles.

Example: Equilibrium of gas and liquid phases of a particular substance. We describe
this case by prescribing in addition to the energy also the number of particles only as a
statistical average, i.e.

(5.31)

as well as

(5.32)

where N̂  is the particle number operator. The general formula for ρ is now to sum over
all states, which belong to �ixed volume V, i.e. over all possible energies and particle numbers.

In analogy to the procedure in Sect. 5.3 we get

(5.33)

where α is another Lagrange parameter and Ni is the particle number in the state |Ψi⟩. The
constant is again determined by ∑i pi = 1; with

(5.34)

U = ∑i piEi = 1
Zc
∑i Ei exp (−βEi) = − ∂

∂β
ln Zc

S = −kB ∑m pm ln pm = kB ∑m pm(ln Zc + βEm) = kB ln Zc + kBβ∑m pmEm

Tr(ρH) = U

Tr(ρN̂) = N ,

pi = const⋅ exp (−βEi − αNi)

Zg = ∑i exp (−βEi − αNi)



as the grand-canonical	partition	function the pi become

(5.35)

The fundamental quantities U, S, N can be calculated in analogy to chapter to 5.3 and be
expressed by Zg:

(5.36)

(5.37)

as well as

(5.38)

5.5	 The	General	Case
In general ρ can depend on all conserved quantities of the system for the case of statistical
equilibrium (see Sect. 3. 2): energy, momentum, angular momentum and particle number;
directly linked to the particle number is the total charge, which we thus do not have to list
separately. Since the systems–we are interested in–all are spatially localized (example: gas in
a macroscopic container), the momentum is omitted as a conserved quantity of the system (=
gas without container). For a system in a perfectly spherical container the angular
momentum is a constant of the motion. But in practice macroscopic containers never meet
this requirement suf�iciently well such that also the angular momentum is omitted as a
conserved quantity. The remaining conserved quantities are energy and particle number;
strictly speaking, they are in practice also no conserved quantities, since the interaction
between the system and the environment never exactly disappears (e.g. interaction of the gas
molecules with the walls of the container). Nevertheless, the microcanonical ensemble—the
case of the isolated system—is a useful idealization. The canonical ensemble is more
realistic, where only the conservation of the average value of the energy is required, and the
grand canonical ensemble, where the energy and number of particles are only conserved on
average. Other models are conceivable in which e.g. the mean-square �luctuation of energy
and/or particle number is �ixed.

5.6	 Additions
Below we present some useful formulae for the practical use of the canonical and grand-
canonical ensembles:

pi = 1
Zg

exp (−βEi − αNi).

U = − ∂
∂β

ln Zg

N = − ∂
∂α

ln Zg

S = kB(ln Zg − β ∂
∂β

ln Zg − α ∂
∂α

ln Zg) = kB(ln Zg + βU + αN).



1. ρ as	a	function	of H and N̂
According to (5.18) and (5.27) we have

(5.39)

since

(5.40)

For the grand-canonical ensemble we get accordingly

(5.41)

2.	Averages
In the canonical ensemble, a statistical average has the general form

(5.42)

and the canonical partition function is

(5.43)

When forming traces we have to use states with a �ixed number of particles and �ixed
volume.

The corresponding expressions for the case of the grand canonical ensemble can be
found from (5.42) and (5.43). First of all, since H and N̂  commute:

(5.44)

where Z ν
c  is the canonical partition function for ν particles. The trace formation is therefore

initially carried out in the subspace of the Fock space for a �ixed particle number ν, then all of
these subspaces are summed up. Likewise one �inds

(5.45)

where ⟨A⟩ν
c  is the canonical average for ν particles. Alternatively:

(5.46)

3.	Systems	with	macroscopically	speci�ied	volume
While in the microcanonical ensemble E, N and V have sharp values, in the canonical

ensemble only N and V have sharp values and in the grand-canonical ensemble only V is
sharp. From a formal point of view it makes sense to investigate the case, in which the
volume V is speci�ied only as an average. For the sake of simplicity, we limit ourselves to a
single dimension: the volume is determined by the operator x̂, i.e. the coordinate of a

ρc = ∑i pi|Ψi⟩⟨Ψi|=
exp(−βH)

Tr(exp(−βH))
,

∑i exp (−βEi)|Ψi⟩⟨Ψi|=exp (−βH)∑i |Ψi⟩⟨Ψi|.

ρg =
exp(−βH−αN̂)

Tr(exp(−βH−αN̂))
.

⟨A⟩c =
Tr(A exp(−βH))

Tr(exp(−βH))
,

Zc = Tr(exp (−βH)).

Zg = Tr(exp (−βH − αN̂)) = Tr(exp (−αN̂) exp (−βH)) = ∑∞
ν=0 exp (−αν)Z ν

c ,

⟨A⟩g =
∑∞

ν=0exp(−αν)⟨A⟩ν
c

{∑
ν
exp(−αν)Z ν

c } ,

⟨A⟩g =
Tr(A exp(−αN̂−βH))

Tr(exp(−αN̂−βH))
.



movable stamp in a cylinder, and the average value of this quantity is X. According to the
procedure presented in Sects. 5.3 and 5.4 we obtain for the statistical operator

(5.47)

The additional (Lagrange) parameter γ will essentially be identi�ied with the pressure P
of the system under consideration. For the entropy S follows (in analogy to (5.38)):

(5.48)

with Z as the partition function corresponding to (5.47). Equations (5.47) and (5.48) will
prove useful, if we investigate the connection between statistical mechanics and
thermodynamics, since with (5.47) and (5.48) also the case of external	work can be
included.

In summarizing this chapter we have investigated different statistical ensembles, that are
characterized by the knowledge of the energy E, the particle number N and the volume V. In
the microcanonical ensemble all these quantities are known precisely, whereas in the
canonical ensemble the energy is only known on average, which lead to the introduction of a
Lagrange parameter β, that is related to the temperature T. In the grand-canonical ensemble
additionally the particle number is only known on average, which lead to the introduction of
a Lagrange parameter α, which is related to the chemical potential μ. Furthermore, in the
general case also the volume V is only known on average thus leading to another Lagrange
parameter γ, which is related to the pressure P.

ρ =
exp(−αN̂−βH−γx̂)

Tr(exp(−αN̂−βH−γx̂))
.

S = kB(ln Z + αN + βU + γX)
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In this chapter we will discuss the results for independent identical particles, i.e.
separately for bosons and fermions, compute the equilibrium occupation numbers as
well as characteristic observables. The limits of low density and/or high temperature
will lead to the classical limit and the Boltzmann statistics.

6.1	 Preliminary	Remarks
As an example for the results of Chap. 5 we consider a system of independent identical
particles, characterized by its Hamiltonian

(6.1)

where all single-particle operators h(ξν) have the same form and consist of kinetic
energy t and potential energy u(ξ),

(6.2)

The eigenstates of H can be speci�ied immediately, most conveniently in particle
number representation:

(6.3)

with

(6.4)

if ϵi are the single-particle energies (≡ eigenvalues of h) and ni indicates how many
particles are occupied in the single-particle state i. For bosons the values 0, 1, 2,... are
possible for ni, for fermions only 0 or 1.

We now want to calculate the most important statistical variables of such a system
of independent particles for the case of the grand-canonical ensemble. This case is
closest to reality and is also computationally easier. For large particle numbers N  we

H = ∑N
ν=1 h(ξν),

h = t + u.

H|n1n2. . .nj. . ⟩ = E|n1n2. . .nj. . ⟩

E = ∑i ϵini ,
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will show (Chap. 8), that for the microcanonical and the canonical ensemble we get the
same results.

6.2	 Average	Occupation	Numbers	of	the	Single-Particle
States
For the case of independent particles we expect that the statistical average values of
the many-body system can be built up additively from the contributions of the single-
particle states. We start with the average occupation numbers of the single-particle
state

(6.5)

We carry out the evaluation of (6.5) in the basis of the eigenstates (6.3) of H, in
which n̂i, N̂  and H are simultaneously diagonal. In this basis the partition function Zg

reads (with (5. 44))

(6.6)

with the boundary condition ∑j nj = ν and (5. 45)

(6.7)

Combination of (6.6) and (6.7) gives

(6.8)

it is thus suf�icient to calculate Zg as a function of ϵi. To this aim we rewrite (6.6):

(6.9)

Whereas in (6.6) we �irst consider the contributions from ν-particle states and then
sum over all values ν = 0, 1, 2,... , in (6.9) the contributions of all single-particle states
are summed up according to their occupation number. It is possible to rewrite Eq. (6.9)
in product form:

(6.10)

⟨ni⟩ = Tr(n̂iexp[−βH−αN̂ ])

Tr(exp[−βH−αN̂ ])
.

Zg = ∑∞
ν=0 exp (−αν){∑{nj}

exp (−β∑j ϵjnj)}

⟨ni⟩ = 1
Zg
∑∞

ν=0 exp (−αν){∑{nj}
ni exp (−β∑j ϵjnj)}.

⟨ni⟩ = −β−1 ∂
∂ϵi

ln Zg ;

Zg = ∑n1
∑n2

∑n3
⋯∑nj

⋯ [(exp (−βϵ1 − α))n1 ⋯ (exp (−βϵj − α))nj ⋯].

Zg = ∏i [∑ni
(exp (−βϵi − α))ni],



which now can be evaluated separately for bosons and fermions. For fermions ni = 0,
1, thus:

(6.11)

For bosons, ni contributes with all values ni = 0, 1, 2,... ∞. In order for Zg to
converge, (for positive ϵi) α and β must be positive, such that the geometric series in
(6.10) can be summed up:

(6.12)

From (6.11) or (6.12) follows with (6.8)

(6.13)

=
exp (−βϵk − α)

1+ exp (−βϵk − α)
=

1

exp (+βϵi + α) + 1

for fermions,

(6.14)

=
exp (−βϵk − α)

1− exp (−βϵk − α)
=

1

exp (+βϵi + α) − 1

for bosons. These are the well-known Bose and Fermi	distributions for
independent particles.

6.3	 Averages

ZF
g = ∏i {1+ exp (−βϵi − α)}.

ZB
g = ∏i (1− exp (−βϵi − α))−1.

⟨ni⟩ = −β−1 ∂
∂ϵi

ln (∏k {1+ exp (−βϵk − α)})

= −β−1 ∑k
∂

∂ϵi
ln ({1+ exp (−βϵk − α)})

⟨ni⟩ = −β−1 ∂
∂ϵi

ln (∏k (1− exp (−βϵk − α))−1)

= β−1 ∑k
∂

∂ϵi
ln ( (1− exp (−βϵk − α)))



For average values such as the internal energy U or the average particle number N  of
the entire system one expects expressions of the form

(6.15)

(6.16)

This formally results from (5. 36) and (5. 37) when using (6.11) for fermions and (6.12)
for bosons.

Equations (6.15) and (6.16) �ix the Lagrange parameters α and β: U and N  are
macroscopically given quantities, the single-particle energies ϵi are determined by
quantum theory (i.e. by the single-particle potential u(ξ)). Unfortunately, Eqs. (6.15)
and (6.16) are too complicated to be solved directly for α and β.

The entropy can also be calculated additively from the contributions of the single-
particle states as (5. 38) directly shows: except from U and N  only ln Zg appears in
the expression for S (5. 38) (S = kB(ln Zg + β∑i⟨ni⟩ϵi + α∑i⟨ni⟩), and results in

(6.17)

for fermions and

(6.18)

for bosons.

6.4	 The	Classical	Limit
There is no spin in classical physics. In the classical limit thus the difference between
fermions and bosons should disappear. Let’s consider as a typical quantity the average
occupation numbers ⟨ni⟩; the classical limit is achieved if

(6.19)

Then we get from (6.13) for bosons and fermions

(6.20)

This result is plausible: the Pauli principle (i.e. the question about the symmetry of
wave functions) is used for problems in statistics (think of the number of possible

U = ∑i⟨ni⟩ϵi,

N = ∑i⟨ni⟩.

ln ZF
g =ln ∏i(1+ exp (−βϵi − α)) = ∑i ln (1+ exp (−βϵi − α))

ln ZB
g =ln ∏i (1− exp (−βϵi − α))−1 = −∑i ln (1− exp (−βϵi − α))

exp (α) ≫ 1.

⟨ni⟩ =exp (−α) exp (−βϵi).



realizations of a certain macro-state) and becomes insigni�icant, if the number of
particles is much smaller than the number of available single-particle states, i.e. when 
⟨ni⟩ is small.

For the average occupation number (6.20) (Boltzmann	statistics) the parameter 
α can be determined by:

(6.21)

thus

(6.22)

Then follows:

(6.23)

We can interpret the condition (6.19) physically by showing that for free particles 
(u(ξ) = 0) the sum

(6.24)

where V is the macroscopic volume. For free particles the single-particle states are
plane waves with momentum p = ħk and energy ϵ = ħ2k2/(2m). We thus replace the
sum over states i by a sum over the discrete states k and account for the degeneracy of
the spin s by a factor (2s + 1):

(6.25)

here k runs over all possible values in the normalization volume V. If V is large, then
the k-values are very close and we can replace the sum by an integral,

(6.26)

Since the energy ϵ = p2/(2m) in (6.24) we can rewrite

(6.27)

and �inally get (with h = 2πħ and ∫ ∞
0

dx x2 exp (−x2/b2) = √πb3/4):

N = ∑i⟨ni⟩ =exp (−α)∑i exp (−βϵi),

exp (−α) = N

∑iexp(−βϵi)
.

⟨ni⟩ = N

∑jexp(−βϵj)
exp (−βϵi).

∑
i

exp (−βϵi) ∼ V ,

∑i ⋯ = (2 s + 1)∑k ⋯ ;

∑k → V

(2π)3 ∫ d3k = V

(2πħ)3 ∫ d3p .

∫ d3k⋯ = 1
ħ3 ∫ d3p⋯ = 4π

ħ3 ∫
∞

0 p2dp

V



(6.28)

with the abbreviation

(6.29)

The quantity λ is also called thermal	De	Broglie	wavelength. Then (6.19) reads
as follows:

(6.30)

Except for the case of low density one can also use the classical limit (6.20) if β is
small. Then λ becomes small and thus–according to (6.28) and (6.22)–exp (α) large. If
we antipate from Chap. 7 that β is related to the temperature T of the system by 
β = 1/(kBT ), the	classical	limit	also	holds	for	high	temperatures. The thermal de
Broglie wavelength (6.29) then reads

(6.31)

Result: For low density and/or high temperature Bose statistics and Fermi
statistics, Eqs. (6.13) and (6.14), merge to the classical Boltzmann statistics.

It is also interesting to investigate the internal energy for free classical particles. It
is

(6.32)

= −N
∂

∂β
ln (V (2 s + 1)/λ3) = −

N

V

λ3

2 s + 1

∂

∂λ
( V

λ3
(2 s + 1)) ∂λ

∂β

=
3N

λ

∂λ

∂β
=

3

2

N

β
=

3

2
N kBT ,

∑i exp (−βϵi) = 4πV
h3 (2 s + 1) ∫ ∞

0 dp p2 exp (−βp2/(2m))

= (2 s + 1) V

h3 ( 2πm
β
)

3/2

=
V (2 s+1)

λ3 = N exp (α)

λ = h√β/(2πm).

V /N ≫ 1 : low density!

λ(T ) = h

√2πmkBT
.

U = ∑i ϵi⟨ni⟩ = N
∑i ϵiexp(−βϵi)

∑iexp(−βϵi)
= −N ∂

∂β ln (∑i exp (−βϵi))



such that on average the energy for each particle is 3/(2β) = 3/2 kBT

(equipartition	theorem).
We will discuss Fermi and Bose statistics in detail in connection with concrete

examples (conduction electrons in metals, lattice oscillations ≡ phonons, photon gas)
in Part III.

Warning: The Boltzmann factor exp (−βϵi) should not be mixed up with the
relative probabilities pj =exp (−βEj) in the statistical operator of the canonical
ensemble! Because:

1. ϵi is a single-particle energy, Ej is the energy of a many-body state;
2. the above expression for pj holds in general for a canonical ensemble also for

interacting particles in the system and
3. the form of the statistical operator (derived in Sect. 5. 3) holds for fermions and

bosons or classical particles!
In summarizing this chapter we have discussed the results for independent

identical particles separately for bosons and fermions and computed the equilibrium
occupation numbers, which are given by the Fermi and Bose distributions.
Furthermore, we have calculated characteristic observables such as the internal
energy and particle number. The limits of low density and/or high temperature have
lead to the classical limit and the Boltzmann statistics.
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In this chapter we will establish the relation of the Lagrange parameters to the temperature,
chemical potential and the pressure. Furthermore, thermodynamical potentials are introduced for
the different ensembles, that are functions of the natural variables as well as their total
differentials. The latter lead to various Maxwell relations between thermodynamic quantities. We
will formulate (and prove) the main laws of thermodynamics and discuss in particular the speci�ic
heat and the thermal expansion coef�icient. It will be shown, that the classical ideal gas violates in
particular the 3rd law of thermodynamics. Finally, we will discuss different changes of state and
compute the ef�iciency coef�icient for the Carnot cycle and the Otto engine.

7.1	 Temperature:		Exchange	of	Heat
In the following we want to show that the Lagrange parameter β is linked to the phenomenological
temperature T by the relation

(7.1)

where kB is the Boltzmann constant.
First we show that for two systems, which may exchange energy (thermal	contact), in

statistical equilibrium holds:

(7.2)

β = 1
kBT

,

β1 = β2.

https://doi.org/10.1007/978-3-031-95518-1_7


Fig.	7.1 Two systems H1 and H2 brought in thermal contact

The two separate systems 1 and 2 are characterized by their Hamiltonians H1 and H2. The
given macroscopic data are particle numbers N1, N2 and the volumes V1, V2 as well as the average
values of energy U1 = Tr(ρ1H1), U2 = Tr(ρ2H2), which correspond to the Lagrange parameters 
β1 and β2 (canonical ensembles). If we now bring the two systems into thermal contact, the
resulting total system in general will not be in thermal equilibrium. Through exchange of energy
by an interaction W between the systems 1 and 2 the equilibrium will be achieved after a long
time, in which the entropy S of the entire system is maximum. We want to assume that the
interaction W between the original systems is so weak, that it can be neglected in the energy
balance, although it is crucial for establishing the equilibrium. With the requirement (see Fig. 7.1),
that N1, V1, U1 and N2, V2, U2 are known, we also know the number of particles after the
equilibrium is established

(7.3)

and the volume

(7.4)

sharp as well as the average value of the energy of the entire system:

(7.5)

We don’t know the individual average values ⟨H1⟩ and ⟨H2⟩ because an energy exchange has
taken place between the systems. The statistical operator in equilibrium—belonging to the
conditions (7.3), (7.4) and (7.5)—is

(7.6)

Here the Lagrange parameter β is �ixed by the condition
(7.7)

N = N1 + N2,

V = V1 + V2

⟨H⟩ = ⟨H1 + H2 + W⟩ ≈ ⟨H1 + H2⟩ = U ;

ρ =
exp{−β(H1+H2)}

Tr(exp{−β(H1+H2)})
.

Tr(ρH) = U .



Writing

(7.8)

we can also formulate the equilibrium condition for the entire system as

(7.9)

Starting from the separate systems with β1 ≠ β2 energy exchange takes place until 
β1 = β2 = β is reached. Exactly the same property holds for the temperature T introduced
phenomenologically in thermodynamics: If we bring two systems with T1 ≠ T2 into thermal
contact, exchange of heat takes place until T1 = T2 = T .

From the considerations above it follows directly (the statement is often called 0th	law	of
thermodynamics): If two systems 1, 2 are in thermal equilibrium with a third system 3,

(7.10)

then the two systems 1 and 2 are in thermal equilibrium with each other:

(7.11)

This provides the possibility of temperature	measurements: With the help of a thermometer
(system 3), the temperatures of two bodies (systems 1 and 2) can be compared. Any macroscopic
system can be used as a thermometer that meets the following requirements:

(i) Bringing the thermometer into thermal contact with the system to be examined, a
parameter of the thermometer (e.g. its length or its electrical resistance or ...) changes
monotonically (due to the expected exchange of energy) until thermal equilibrium is reached.

(ii) The thermometer must be much smaller (i.e. have fewer degrees of freedom) as the system
to be examined, such that the energy exchange and the perturbation of the system—to be
examined—is as small as possible.

Of course, one always has to wait, when taking a temperature measurement, until thermal
equilibrium between the thermometer and the system is achieved.

The considerations above show, that a relationship exists between the temperature T and the
Lagrange parameter β,

(7.12)

About the connection (7.12 ) we can prove the following general statement: β must	decrease
with T. Phenomenologically we know that higher temperature implies higher energy. On the other
hand, for statistical mechanics (see Chap. 8) holds:

(7.13)

To �ind the exact functional connection between β and T, we now consider an ideal gas. We found
in Chap. 6, Eq. (6. 32):

(7.14)

exp {−β(H1 + H2)} =exp (−βH1) exp (−βH2),

β1 = β2 = β.

β1 = β3; β2 = β3,

β1 = β2.

β = β(T ).

(ΔH)2 = ⟨H 2⟩ − ⟨H⟩2 = − ∂U
∂β ≥ 0.

U = 3
2 N β−1,



while in phenomenological thermodynamics we have

(7.15)

We therefore identify

(7.16)

We have (tacitly) made use of the assumption, that the thermodynamically de�ined internal
energy U can be identi�ied with Tr(ρH). This identi�ication follows inevitably, when we accept to
describe a real macroscopic system by a statistical ensemble! In Sect. 7.5 we will con�irm the
relation (7.16) by the ideal gas equation PV = NkBT .

Note: The considerations above about the temperature of a system can also be employed
within the framework of microcanonical ensembles, where at the beginning the systems 1 and 2
are considered to be isolated, as well as for the entire system after equilibration. If W is negligible
within the energy balance (as assumed above), then the energy E (sharp value!) and entropy S of
the entire system are additive with respect to the corresponding quantities of the individual
systems (volume and number of particles are �ixed!). The equilibrium state is characterized by

(7.17)

with the additional condition

(7.18)

A combination of (7.17) with (7.18) gives the equilibrium condition

(7.19)

which corresponds to Eq. (7.2), or in the form

(7.20)

The temperature for the microcanonical	ensemble, de�ined by ∂S/∂E, is not identical to the
temperature de�ined by ∂S/∂U  of the canonical	ensemble; however, the difference disappears
with increasing number of particles (see Chap. 8).

7.2	 Chemical	Potential:		Particle	Exchange
We next examine two systems that can exchange both energy and particles. The argumentation is
in analogy to the heat exchange. The two separate systems are described by the grand-canonical
ensemble:

(7.21)

U = 3
2 N kBT .

β = 1
kBT

.

δS = ( ∂S
∂E1

)δE1 + ( ∂S
∂E2

)δE2 = 0

δE = 0 → δE1 = −δE2.

∂S
∂E1

= ∂S
∂E2

,

∂S
∂U1

= ∂S
∂U2

= β.



for i = 1, 2, where in general

(7.22)

Bringing the systems into contact, they exchange energy and particles until equilibrium is achieved
for the entire system. The statistical operator of the entire system, for which holds

(7.23)

and

(7.24)

(7.25)

has the form:

(7.26)

Since the exp-operator in (7.26) can be split into

(7.27)

the equilibrium conditions are:

(7.28)

Usually instead of α one uses the quantity

(7.29)

such that (7.28) turns to

(7.30)

Since the equilibrium parameter μ in chemical reactions (example: dissociation of atomic
hydrogen: H ↔ p + e) plays an important role, it is generally denoted as chemical	potential.

The equilibrium conditions can also be formulated for the case of isolated systems and the
entire system, which are microcanonical ensembles. The equilibrium state of the entire system
then is characterized by, since V = V1 + V2 is �ixed,

(7.31)

ρi =
exp{−βiHi−αiN̂i}

Tr(exp{−βiHi−αiN̂i})

β1 ≠ β2; α1 ≠ α2.

U = Tr(ρH)

N = Tr(ρN̂)

H = H1 + H2(+W); N̂ = N̂1 + N̂2,

ρ =
exp{−β[H1+H2]−α[N̂1+N̂2]}

Tr(exp{−β[H1+H2]−α[N̂1+N̂2]})
.

exp {−βH1 − αN̂1} exp {−βH2 − αN̂2},

β1 = β2; α1 = α2.

μ = − α
β

= −αkBT ,

β1 = β2; μ1 = μ2.

( ) ( ) ( ) ( )



at

(7.32)

and

(7.33)

This gives the equilibrium conditions

(7.34)

which—in agreement with (7.20)—for the case of a grand-canonical ensemble are:

(7.35)

Note that in analogy to Sect. 7.1 only for large particle numbers ∂S/∂N = ∂S/∂N  becomes
valid.

7.3	 Pressure:		Volume	Exchange,	External	Work
In the general case, where for the individual systems as well as for the entire system only the
average values of energy, particle number and volumes are �ixed, the statistical operator of the
entire system—after equilibrium has been established—reads (cf. (5. 47)):

(7.36)

This corresponds to the situation where the two systems 1 and 2 are separated by a (freely)
movable wall (in x direction), which is transparent for the exchange of energy and particles (see
Fig. 7.2).

δS = ( ∂S
∂E1

)δE1 + ( ∂S
∂E2

)δE2 + ( ∂S
∂N1

)δN1 + ( ∂S
∂N2

)δN2 = 0

δN = 0 → δN1 = −δN2

δE = 0 → δE1 = −δE2.

∂S
∂E1

= ∂S
∂E2
; ∂S

∂N1
= ∂S

∂N2
,

∂S
∂U1

= ∂S
∂U2
; ∂S

∂N1
= ∂S

∂N2
.

ρ =
exp{−αN̂−βH−γx̂}

Tr(exp{−αN̂−βH−γx̂})
.



Fig.	7.2 Two systems H1 and H2 in thermal and mechanical contact also allowing for particle exchange

According to the considerations (1) and (2) we must have in equilibrium:

(7.37)

(7.38)

and

(7.39)

With (see eq. (5. 48))

(7.40)

we can also write (7.37), (7.38), (7.39) as in analogy to (7.35).

(7.41)

To associate the parameter γ with the pressure, we replace system 2 by an external force (e.g.
weight in the gravitational �ield; see Fig. 7.3).

β1 = β2 (therm. equilibrium)

α1 = α2 (chemical equilibrium)

γ1 = γ2 (mechanical equilibrium).

S = kB(ln Z + αN + βU + γX)

∂S
∂U1

= ∂S
∂U2
; ∂S

∂N1
= ∂S

∂N2
; ∂S

∂X1
= ∂S

∂X2



Fig.	7.3 Example of a system under the in�luence of an external force f = −Mg, where M denotes the mass of the weight

The statistical operator for the equilibrium then is obtained by adding to the Hamiltonian H of
the system the potential energy −fx̂ = Mgx̂ of the stamp, i.e.:

(7.42)

The comparison with (5. 47) (ρ = ρ(βH + γx̂, N̂)) then leads to

βH + γx̂ = βH − βfx̂.

A comparison of the coef�icients gives

(7.43)

where f = −Mg is the constant external force. We thus can identify

(7.44)

with the pressure P of the system on the stamp, where F denotes the area of the stamp.
Transferring this result to our original example, we see that the equilibrium condition 
∂S/∂V1 = ∂S/∂V2 implies P1 = P2; V and Vi denote the average values of the volumes,
respectively.

Result: The formal Lagrange parameters α, β and γ we have linked with the temperature T,
chemical potential μ and pressure P. Thus: a certain value of the internal energy U determines
the temperature T, a given average particle number N  determines the chemical potential μ and
a given average volume V determines the pressure P. The statistical operator ρ (7.36) can thus
also be written as

(7.45)

For the entropy S we get (after multiplication by T)

(7.46)

ρ = ρ(H − fx̂, N̂).

γ = −β f,

T ∂S
∂V = T

F
∂S
∂X =

γ

Fβ
=: P

ρ =
exp{−β(H−μN̂+PV̂ )}

Tr(exp{−β(H−μN̂+PV̂ )})
.

TS = TkB ln Z + U − μN + PV .



7.4	 Simple	Examples
In this section we will cover some simple examples for the equilibrium conditions (7.41)

T1 = T2; P1 = P2; μ1 = μ2.

The condition μ1 = μ2 will be of priority, which represents the chemical equilibrium (equilibrium
with respect to particle exchange). Systems 1 and 2, which are in equilibrium, we assume to be
homogeneous (N /V  = const). Then particle number and volume are not independent variables of
the system, which implies that the three conditions (7.41) are not independent. One thus can
consider e.g. μ as a function of P and T,

μ = μ(P ,T ),

where in (7.41) the third condition follows from the �irst two.
Example	1:	Phase	equilibria Experience has shown that one and the same substance,

consisting of a speci�ic type of atoms or molecules, can occur in various modi�ications (phases).
Different phases have different physical properties such as density, compressibility, susceptibility
etc. A �irst rough distinction is between solid,	liquid and gaseous phases; solid and liquid phases
in turn can occur in various phases, for example as different lattice structures of the same
substance, or in ferromagnetic,	superconducting,	super�luid phases.

Phase equilibrium occurs when two or more phases are in contact with each other and the
equilibrium conditions (7.41) are ful�illed. Overall it then is an inhomogeneous system; every
individual phase can, however, be viewed as homogeneous.

For a two-phase system of a substance equation (7.41) reads

(7.47)

where P and T are the common pressure and temperature of the two phases. Equation (7.47) then
describes a line P = P(T ) in the P − T  plane (see Fig. 7.4), where the two phases can coexist. On
either side of this line, however, only a single phase can exist.

Fig.	7.4 Example of a P-T diagram

In the three-phase system of a substance the equilibrium conditions for particle exchange are:

(7.48)

μ1(P ,T ) = μ2(P ,T ),

μ1(P ,T ) = μ2(P ,T ) = μ3(P ,T ).



By (7.48) a point is de�ined in the P − T  diagram (tr), the so-called triple	point in which all three
phases can exist simultaneously. Obviously, no more than three phases of a substance can exist in
equilibrium. Above a critical point (cr) no longer a clear distinction between liquid and gas is
possible. The ‘phase transition’ then is called a crossover.

If we generalize the considerations above, we get the Gibbs	phase	rule.
For n different substances the chemical potentials μa

i (i = phase, a = material) in each phase
depend—apart from P and T—also on (n − 1) concentrations ca of the substances. If r phases are
in equilibrium, then we get as equilibrium conditions (in analogy to (7.48)) n ⋅ (r − 1) equations.
The variables, on which the μa

i  depend, are P and T as well as (n − 1) concentrations ca for each
phase; these are 2 + r ⋅ (n − 1) variables. When considering the n ⋅ (r − 1) equilibrium
conditions we remain with

(7.49)

free independent variables. In (7.49) f indicates the number of variables that can be changed
without destroying the equilibrium. If f = 0, i.e. r = n + 2, all variables are �ixed due to the
equilibrium conditions; one cannot change any of the variables without destroying the
equilibrium.

The maximum number of phases of a system with n components (substances), which
simultaneously are in equilibrium, thus is n + 2.

Example	2:	Chemical	reactions Chemical reactions, that occur in a mixture of substances
reacting with each other, ultimately lead to a state of equilibrium in which the amounts of the
substances (involved in the reaction) no longer change: chemical	equilibrium. Any chemical
reaction generally occurs in both directions; before reaching the equilibrium, one direction of the
reaction predominates, in equilibrium both reaction rates (forward and backward) become the
same such that the total amount of each of the substances involved no longer changes. The
thermodynamics	of	chemical	reactions just deals with the investigation of the equilibrium, not
with the processes leading to equilibrium!

During a chemical reaction the particle numbers of the different reaction partners cannot
change arbitrarily. For example, in the reaction

(7.50)

always

(7.51)

or for

(7.52)

must hold

(7.53)

Writing chemical reactions as

(7.54)

where Ai is the chemical symbol of the i − th particle type, then

f = 2 + r ⋅ (n − 1) − (n ⋅ (r − 1)) = 2 + n − r

H + D ⇔ HD

δNH = δND = −δNHD,

2H2 + O2 ⇔ 2 H2O

2δNH2 = −2δNH2O = δNO2 .

∑i νiAi = 0,



(7.55)

if δN  is the number of elementary reactions. In the example (7.53) ν1 = 2 (for H2), ν2 =1 (for O2)
and ν3 = −2 (for H2O). The equilibrium state of a closed system then has a maximum of the
entropy S with respect to the changes in Ni following the constraints (7.55). Thus inserting

(7.56)

into equation (7.55), this results in the condition for chemical equilibrium:

(7.57)

If one knows the chemical potentials μi(P ,T , ci) of the reaction partners as a function of
pressure P, temperature T and the concentrations ci = Ni/(∑iNi), then Eq. (7.57) provides a
relation between the concentrations ci, P and T (law	of	mass	action).

7.5	 The	Way	to	Equilibrium
Compared to the theory of statistical equilibrium the theory of thermodynamic processes—
especially the way to equilibrium—is more complex. Therefore, this topic will be addressed only
by a few qualitative statements here, which con�irm the discussion made in Sects. 7.1–7.3 in
connection of thermodynamic quantities (μ, T, P) with statistical mechanics (Lagrange parameters
α, β, γ). For the treatment of processes out of equilibrium we refer to Part IV.

We �irst consider the case of approaching thermal equilibrium. The two systems 1, 2 are
initially characterized by β1 > β2 (T1 < T2). Bringing the systems in thermal contact, then the
entropy for 1 + 2 increases since we describe the internal energies U1 and U2 by only a single
condition for the total internal energy U and thus lose information. After producing the thermal
contact, S will increase such that for quasi-static processes (see below) from

(7.58)

follows:

(7.59)

using

(7.60)

With β1 = ∂S1/∂U1, β2 = ∂S2/∂U2 we get

(7.61)

or, since β1 > β2 was assumed,

(7.62)

Equation (7.62) states that the energy of the system with the lower temperature increases until
thermal equilibrium is reached.

δNi = νiδN ,

0 = δS = ∑i( ∂S
∂Ni

)δNi = −β∑i μi δNi = −β(∑i μi νi)δN = 0

∑i νiμi = 0.

δS > 0

( ∂S1

∂U1
− ∂S2

∂U2
)δU1 > 0,

δU1 = −δU2.

(β1 − β2)δU1 > 0

δU1 > 0.



We now consider 2 substances, which are in thermal equilibrium (β1 = β2 = β = 1/(kBT )),
but not yet in mechanical equilibrium: γ1 > γ2 (P1 > P2). The entire system then develops in
such a way that the entropy increases until mechanical equilibrium also is achieved. After bringing
the systems into contact, then according to the considerations for case 1 we have:

(7.63)

Since P1 > P2 was assumed, it follows:

(7.64)

Thus the system with the higher pressure expands until mechanical equilibrium is achieved.
Using the same procedure, one proves that, when establishing the chemical equilibrium, the

system with the higher chemical potential μ releases particles to the system with lower chemical
potential.

7.6	 Thermodynamic	Potentials
In the phenomenological thermodynamics any equilibrium state can be described completely by
exactly one function of the natural variables of the system. Such a function, where all other
thermodynamic variables can be determined by differentiation, is called thermodynamic
potential. The natural variables are the independent variables of the system speci�ied
experimentally; in the absence of external �ields and for systems of identical particles there are—
depending on the macroscopic conditions—3 such variables, e.g. E, V, N for an isolated	system or
T, V, N for a system	in	thermal	contact	with	a	heat	reservoir. Depending on the choice of the
natural variables there are different thermodynamic potentials. The free	energy F =: U − TS is
the thermodynamic potential of the natural variables T, V, N, while for T, P, N the free	enthalpy 
G =: U − TS + PV  is the thermodynamic potential.

The importance of natural variables becomes specially clear from the perspective of statistical
mechanics: for every system of a statistical ensemble the natural variables have the same, �ixed
value, the other thermodynamic quantities are only to be taken as average values and subject to
�luctuations. The phenomenological thermodynamics does not know this difference; statistical
mechanics and phenomenological thermodynamics can only be merged fully with each other, if the
�luctuations in the average values become vanishingly small, i.e. for very large particle numbers
(see Chap. 8).

In table (7.65) the most important thermodynamic potentials and their natural variables are
listed:

(7.65)

with the entropy S, the free	energy F, the free	enthalpy G, the grand-canonical	potential J, the
internal	energy U and the enthalpy ϵ = U + PV .

( ∂S1

∂V1
− ∂S2

∂V2
)δV1 = 1

T
(P1 − P2)δV1 > 0.

δV1 > 0.

thermodyn. potential natural variables total differential

I S E,V ,N dS = 1
T
dE + P

T
dV −

μ

T
dN

II F = U − TS T ,V ,N dF = −SdT − PdV + μdN

III G = U − TS + PV T ,P ,N dG = −SdT + V dP + μdN

IV J =: E − TS − μN T ,V ,μ dJ = −SdT − PdV − Ndμ

V U S,V ,N dU = TdS − PdV + μdN

V I ϵ := U + PV S,P ,N dϵ = TdS + V dP + μdN



The total differentials indicate how the thermodynamic potentials change in quasi-static
processes due to in�initesimal changes of the natural variables. Quasi-static processes are those
that are slow compared to the time needed to achieve equilibrium; thus there will be a chain of
equilibrium states that are close to each other. Quasi-static processes can be both reversible and
irreversible. A simple example is the heat exchange between 2 systems with a �inite temperature
difference through a very poor heat conduction contact. Such a process is quasi-static, but
irreversible.

We begin by discussing case I, in which E, N, V are the natural variables. This is the case of a
closed	system, which we can describe by the microcanonical	ensemble as found in Sect. 5. 2:

(7.66)

where the number of possible realizations of the macro-states Zm is a function of E, V, N,

(7.67)

thus also

(7.68)

S is in fact the desired thermodynamic	potential (entropy). In addition we form the total
differential

(7.69)

and take into account the results from Sects. 7.1–7.3. For quasi-static processes ∂S/∂E is

(7.70)

and linked to the temperature T (of the microcanonical ensemble); accordingly

(7.71)

and

(7.72)

where P is the pressure and μ the chemical potential (of the microcanonical ensemble). With these
we get (see table (7.65))

(7.73)

this relation will help again in the discussion of the �irst law of thermodynamics. However, it
should be noted that the quantities introduced above (T, P and μ) only match the quantities
discussed in Sects. 7.1–7.3, if the �luctuations of U, N and V become in�initesimal (see Chap. 8).

We now choose T, V, N as the natural variables. Since according to Sect. 7.1 T = 1/(kBβ) and
since β determines the internal energy U of a system (as an average!), we can also consider U, V, N
as given, −V  and N as sharp values, U as an average.—This is exactly the situation, which we
describe by the canonical	ensemble. For the partition function Zc we found (Chap. 5):

(7.74)

S = kB ln Zm,

Zm = Zm(E,V ,N),

S = S(E,V ,N).

dS = ( ∂S
∂E )dE + ( ∂S

∂V )dV + ( ∂S
∂N )dN

∂S
∂E = kBβ = 1

T

∂S
∂N = −kBβμ = −

μ

T

∂S
∂V = kBβP = P

T
,

TdS = dE + PdV − μdN ;



the sum is over all micro-states with a �ixed number of particles N and �ixed volume V; Ei are the
associated energies of the system. Since the energies Ei depend on the parameters N and V,

(7.75)

The associated thermodynamic potential is (with S = kB(ln Zc + βU) = kB ln Zc + U/T )

(7.76)

cf. (5. 30), in accordance with the phenomenological thermodynamics. For the total differential
we get

(7.77)

or, if we neglect the �luctuations of U and use dU from the table (7.65):

(7.78)

Corresponding considerations can be carried out for cases III and V. The general equilibrium
condition δS = 0 transfers—for all cases II to VI—to corresponding conditions for F, U, G or J.

Note: In the mathematical sense, the different thermodynamic potentials correspond to
Legendre transformations with respect to the conjugate variables (T, S), (μ,N) and (P, V).

A set of useful relations (Maxwell	relations) result from the integrability conditions for the
total differentials for S, F, G, U, J and others (practically less important) thermodynamic potentials.

Example: For the total differential of F = F(T ,V ,N) (7.78) must hold:

(7.79)

where the indices indicate, which quantities must be kept constant when forming the partial
derivatives. It is useful to prepare a table of the various possible Maxwell relations for each
thermodynamic potential in table (7.65).

7.7	 The	Main	Laws	of	Thermodynamics
The �irst law is nothing else than the general energy theorem formulated in terms of
thermodynamics:

1. The energy of an isolated system is constant in time.

This statement is also provided by statistical mechanics, because an isolated system is
described by the microcanonical ensemble, where all systems of the ensemble have the same,
constant energy.

2. The internal energy of a system changes, when energy is added to (or withdrawn from)
the system.

Zc = ∑i exp {−βEi};

Zc = Zc(β,N ,V ).

F =: −kBT ln Zc = U − TS,

dF = dU − TdS − SdT ,

dF = (TdS − PdV + μdN) − TdS − SdT = −SdT − PdV + μdN .

( ∂ 2F
∂T∂V ) = ( ∂ 2F

∂V ∂T ) or ( ∂S
∂V )

T ,N
= ( ∂P

∂T )
V ,N

,



The change ΔU  is decomposed in thermodynamics in 2 parts: (i) the work done by the
environment on the system ΔW  and (ii) the heat absorbed (emitted) ΔQ,

(7.80)

This division is not determined by the initial and �inal state of the system, but depends on the
character of the process; thus the quantities W and Q are no thermodynamic potentials. For the
conceptual distinction between W and Q we consider the (external) parameters of the system such
as volume, external �ields, spatial position of the system etc.: ΔW  originates from the change of
external parameters, e.g. the volume, while ΔQ ≠ 0 can happen even if the external parameters
do not change.

Example: Take a bottle of beer out of the fridge and put it on a table (of the same height). Then 
ΔW = 0; no work is done. Nevertheless, the energy of the environment is transferred to the bottle
of beer in the form of heat: ΔU = ΔQ ≠ 0; the beer changes its condition; it heats up and
becomes less tasty.

To prove the �irst law—in the form of the energy balance (7.80)—from statistical mechanics
we transform the process of energy change into quasi-static steps. For each step the following
differential applies according to the table (7.65)

(7.81)

or (as tacitly assumed in (7.80)) for �ixed particle number (dN = 0)

(7.82)

The 2nd term has to be identi�ied with the work done

(7.83)

this leaves

(7.84)

(Note: We rewrite δW  and δQ to indicate that W and Q are not thermodynamic potentials.)
Equation (7.84) is consistent with the connection between entropy and heat, that is expressed

in the second law, if we identify the missing information S with the entropy. Before we continue
this line of arguments, let’s once again brie�ly come back to the splitting of dU into the two parts
heat and work.

Starting from the general formula for the average value of the internal energy

(7.85)

we form

(7.86)

Since heat transfer occurs for �ixed external parameters, and since for �ixed external parameters
(e.g. volume) the energy eigenvalues of the system are �ixed, the �irst term in (7.86) represents the
heat transfer,

(7.87)

ΔU = ΔQ + ΔW .

dU = TdS − PdV + μdN ,

dU = TdS − PdV = δQ + δW .

δW = −PdV ;

δQ = TdS.

U = ∑i piEi

dU = ∑iEidpi + ∑i pidEi = δQ + δW .



originating from a change in the probabilities pi describing the ensemble. Then it follows for the
work done

(7.88)

which stems from a change of external parameters (e.g. volume) leading to a change in the energy
levels of the system.

The 2nd	law	of	thermodynamics states, that to a macroscopic system in equilibrium we can
assign a quantity entropy, which has the following properties:

1. For quasi-static processes the heat absorbed by the system δQ is linked to an entropy
change dS by

(7.89)

where T is the temperature of the system in equilibrium.

2. The	entropy	of	an	isolated	system	can	never	decrease (ΔS ≥ 0).

The missing information S, that we have introduced according to equation (7.84) and (4. 36),
has exactly the properties required above and can therefore �inally be identi�ied with the entropy.
Processes for which S(0) = S(t) are called reversible, those with S(0) < S(t) are called
irreversible. Irreversible processes are therefore those that only run in a single direction;
reversible processes are idealizations, that are necessary for the construction of the
thermodynamics (example: Carnot	cycle). Every real process contains irreversible parts and runs
by itself until the entropy reaches a maximum: statistical	equilibrium.

Notes:
(i) If one naively applies the above statements to the whole universe, then its entropy would

have to increase continuously until total equilibrium is reached. However, this consideration is not
conclusive, since we use statistical mechanics within the framework of a non-relativistic theory,
which is certainly not applicable to the universe as a whole.

(ii) Note that (7.73) only applies to quasi-static processes. If this condition is not met, the
inequality applies instead

(7.90)

3. Entropy is an extensive quantity.
This property of additivity also holds for the missing information S: Considering 2 independent

systems 1, 2 with the statistical operators ρ1, ρ2 as a new, combined system 1 + 2, its statistical
operator is given by

(7.91)

note that the micro-states of the combined system are direct products of the micro-states of the
individual systems. If one assumes ρ1, ρ2 to be normalized, we get:

(7.92)

as claimed above.

δQ = ∑iEidpi,

δW = ∑i pidEi,

dS = δQ

T
,

TdS > dE + PdV − μdN .

ρ1+2 = ρ1ρ2 = ρ2ρ1;

S1+2 = −kBTr(ρ1ρ2{ln ρ1+ ln ρ2}) = S1 + S2



Note: In thermodynamics a distinction is made between extensive quantities (such as volume
V, internal energy U, entropy S) and intensive quantities (such as temperature T, pressure P,
density N /V ). Intensive quantities do not change if one divides a homogeneous system into
smaller (but still large) systems, extensive quantities decrease in relation to the number of
particles.

Example: A homogeneous system with a number of particles N, internal energy U and pressure
P is divided into two equal parts: N1 = N2 = 1/2N ; then P1 = P2 = P , but U1 = U2 = 1/2 U .

The 3rd	law	of	thermodynamics provides a further statement about the entropy S : 

For every pure system, that contains only 1 type of particles, the following holds

(7.93)

independent of the values of other variables (e.g. pressure or external magnetic �ield), on which
S still depends.

For systems with several types of particles in the limit T → 0 a nonzero mixing
entropy remains.

The statement above can be derived as follows from statistical mechanics: The Hamilton
operator has a discrete and limited spectrum from below,

(7.94)

If T is small enough, i.e.

(7.95)

then follows (5. 27)

(7.96)

for the states belonging to E0,

pi = 0 otherwise,

where g0 is the degeneracy of the groundstate. Then

(7.97)

such that for systems with a non-degenerate ground state, g0 = 1,

(7.98)

Concrete examples are free fermions and free bosons, for which (7.98) can be proven directly (see
Chaps. 9 and 10). On the other hand, for a classical ideal gas equation (7.98) is not ful�illed; the
classical theory is no longer applicable at low temperatures (see Sect. 6. 4).

The 3rd law of thermodynamics—in the formulation given above—cannot be tested
experimentally since only entropy differences can be measured. However, it has a number of direct
consequences, some of which are listed below.

7.8	 Speci�ic	Heat

S(T = 0, …) = 0

E0 < E1 < E2 < ⋯ .

E1 − E0 ≫ kBT ,

pi = 1
g0

limT→0 S = kB ln g0,

limT→0 S = 0.



A heat transfer ΔQ increases the temperature of a system according to its heat capacity. The latter
depends on both the nature of the system as well the type of heating. For a �ixed number of
particles—and without external �ields—we have to distinguish between: heating at constant
volume with the heat	capacity 

(7.99)

and heating at constant pressure, where the heat capacity CP  is de�ined by

(7.100)

here the quantity ϵ = U + PV  is the enthalpy.
The de�inition (7.99) becomes immediately plausible, if one writes the total differential of U as

(7.101)

and considers the case of constant particle number (dN = 0) and constant volume (dV = 0). To
justify (7.100), we consider the total differential of U + PV ,

(7.102)

and takes the limit of constant pressure (dP = 0) and constant particle number (dN = 0).
We now want to show that the speci�ic	heat (heat capacity per unit mass) in both cases

disappears at T = 0 as a consequence of the 3rd law of thermodynamics. We carry out the proof
for CV ; for CP  it proceeds in analogy. For dV = dN = 0 we can write (7.101) with (7.89) as

(7.103)

or in integral form

(7.104)

since S(T = 0) = 0. In order to obtain a �inite S(T) the heat capacity CV  must disappear for 
T ′ = 0 to eliminate the singularity of 1/T ′.

This allows us to immediately prove that the model of the classical ideal gas at absolute zero
temperature is wrong. We have found in Sect. 6. 4 for the average value of the internal energy:

(7.105)

such that:

(7.106)

independent of T, thus contradicting the 3rd law. In Part III we will show that the ideal Fermi gas
and the ideal Bose gas are consistent with the 3rd law.

CV =: ( ∂U
∂T

)
V

CP =: ( ∂[U+PV ]
∂T )

P
= ( ∂ϵ

∂T )
P
;

dU = δQ − PdV + μdN

d[U + PV ] = δQ + V dP + μdN ,

dS = ( ∂U
∂T )

V
dT
T

= CV

T
dT

S(T ) = ∫ T

0
CV

T ′ dT ′,

U = 3
2
N kBT ,

CV = 3
2
kBN ≠ 0



7.9	 Thermal	Expansion	Coef�icient
The Maxwell relation, following from case III of the table (7.65) from the free energy G (for 
dN = 0), reads

(7.107)

Since S(T ,P) → 0 for T → 0 for all values of P (or other parameters on which S may depend)
follows i.e. the thermal expansion coef�icient at constant pressure vanishes at absolute zero
temperature. This can be illustrated using the example of an adiabatic change of pressure that the
absolute	zero	temperature is inaccessible.

(7.108)

To prove this, we �irst show that for an adiabatic change of pressure (dS = 0) holds:

(7.109)

Proof We rewrite the total differential

(7.110)

in the variables U, V to the variables T, P by:

(7.111)

We replace in the �irst [..]:

(7.112)

and rewrite the second [..]—using the integrability condition ∂ 2S/∂T∂P = ∂ 2S/∂P∂T  in the
form,

(7.113)

This leads to the desired form:

(7.114)

all remaining terms in (7.113) cancel. Then for an adiabatic process dS = 0 follows from (7.111)
with (7.112) and (7.113):

(7.115)

In a second step we prove that the quotient (∂V /∂T )P/CP  for T → 0 remains �inite. It then
follows in (7.109) that with decreasing pressure the change in temperature becomes smaller and

∂ 2G
∂T∂P

= ∂ 2G
∂P∂T

→ ( ∂S
∂P

)
T

= −( ∂V
∂T

)
P

.

limT→0 ( ∂V
∂T )

P
= 0,

dT = ( ∂V
∂T )

P
T
CP

dP .

dS = 1
T

dU + P
T

dV

dS = 1
T
[( ∂U

∂T )
P

+ P( ∂V
∂T )

P
]dT + 1

T
[( ∂U

∂P )
T

+ P( ∂V
∂P )

T
]dP .

( ∂U
∂T )

P
+ P( ∂V

∂T )
P

= ( ∂U+PV
∂T )

P
= CP

1
T

∂
∂P

[( ∂U
∂T

)
P

+ P( ∂V
∂T

)
P
]
T

= ∂
∂T

( 1
T
[( ∂U

∂P
)
T

+ P( ∂V
∂P

)
T
])

P
.

1
T
( ∂V

∂T
)
P

= − 1
T 2 [( ∂U

∂P
)
T

+ P( ∂V
∂P

)
T
] ;

CP

T
dT = ( ∂V

∂T
)
P
dP , q. e. d.



smaller. Since we know that CP → 0 for T → 0, we can write for small temperatures

(7.116)

where ν > 0 and a, b are functions of P. We can connect (∂V /∂T )P  with CP  as follows:

(7.117)

if we insert (7.114) into (7.111). With

(7.118)

After carrying out the integral in (7.117):

(7.119)

then

(7.120)

The result illustrates the (schematic) representation of S = S(T ,P) in Fig. 7.5 for S(T). By a
sequence of isothermal and adiabatic changes in pressure one can reduce the temperature; but
since according to the 3rd law S(T ,P) = S(T ,P ′) for T = 0 the absolute zero temperature
cannot be reached within a �inite number steps with a �inite pressure difference. Analogy:
magnetic	cooling (see Part III).

Fig.	7.5 Illustration of a sequence of isothermal and adiabatic changes in pressure for a reduction of the temperature

7.10	 The	Classical	Ideal	Gas
allows for a concrete evaluation of the previous considerations. First of all we want to look at the
ideal gas equation. According to table (7.65) we can write P (in the case of the grand-canonical
ensemble) as

(7.121)

CP = T ν(a + bT + ⋯)

( ∂V
∂T )

P
= −( ∂S

∂P )
T

= − ∂
∂P ∫ T

0
CP

T ′ dT ′ = − ∫ T

0
∂CP

∂P
1
T ′ dT ′,

∂CP

∂P = T ν(a′ + b′T + ⋯)

( ∂V
∂T )

P
= −T ν( a′

ν
+ b′T

ν+1 + ⋯),

( ∂V
∂P )

P
/CP = − a′

νa
: finite.



with

(7.122)

This is just the case that �its the thermodynamic potential of the grand-canonical ensemble, i.e.
(with S = kB(ln Zg + βU + αN) or TS = TkB ln Zg + U − μN):

(7.123)

according to equation (5. 38). We can therefore obtain the pressure P from

(7.124)

We now calculate the quantity ln Zg from (6. 17) or (6. 18) in the classical limit; with 
ln (1 ± x) ≈ ±x⋯ for |x| ≪ 1 we get immediately (with the (+) sign for fermions and the (−)
sign for bosons):

(7.125)

=exp (−α)∑
i

exp (−βϵi) =exp (−α)
V

λ3
(2s + 1) = N .

Thus

(7.126)

or �inally,

(7.127)

From the internal energy U = 3/2N kBT  (6. 32) immediately follows:

(7.128)

in obvious contradiction to the 3rd law of thermodynamics: => the classical	approximation
is	not	valid	for	low	temperatures! CP  follows from (7.100) with (6. 32) and (7.127):

(7.129)

P = −( ∂J
∂V )

T ,μ

J = U − TS − μN = J(T ,V ,μ).

TkB ln Zg = 1
β

ln Zg = TS − U + μN = −J

P = 1
β
( ∂lnZg

∂V
)
T ,μ

.

ln Zg = ±∑i ln {1± exp (−βϵi − α)} ≈ ∑i exp (−βϵi − α)

P = −( ∂J
∂V )

T ,μ
= 1

β
( ∂lnZg

∂V )
T ,μ

= 1
β

exp (−α) 2s+1
λ3 = 1

β
N

V
= N

V
kBT

PV = N kBT .

CV = 3
2 N kB,

( )



For the ratio we get:

(7.130)

7.11	 Special	Changes	of	State
The following de�initions hold in general and are illustrated for the example of the ideal gas
(7.127) with �ixed particle number N (dN = 0) to provide explicit results for the work	done W12

and the amount	of	heat	absorbed Q12.
Isochoric	changes: For isochoric changes of state the volume is constant (dV = 0), i.e. using

the example of the ideal gas according to the equation of state (7.127)

(7.131)

Isobaric	changes: For isobaric changes of state the pressure is constant (dP = 0), i.e. (using
the example of the ideal gas) we get for the absorbed amount of heat Q12 and the work done on
the system W12

(7.132)

Q12 = ∫
2

1

CP dT = CP (T2 − T1).

Isothermal	changes: For isothermal changes of state the temperature (and therefore U, 
dU = 0) is constant, i.e. (using the example of the ideal gas) we get for the absorbed amount of
heat Q12 and the work done on the system W12

(7.133)

δW = −PdV = −NkBT
dV

V

W12 = −∫
2

1

NkBT
dV

V
= −NkBT ln (

V2

V1
) = −NkBT ln (

P1

P2
),

ΔU = 0 → Q12 = −W12.

Adiabatic	changes: In this case the entropy is constant (dS = 0) and thus the absorbed heat 
δQ = 0;

CP =
∂(U+PV )

∂T
= CV + N kB = 5

2
N kB.

κ := CP

CV
= 5

3 .

P1

P2
= T1

T2
; Q12 = U2 − U1 = CV (T2 − T1).

V1

V2
= T1

T2
; W12 = ∫ 2

1
PdV = P(V2 − V1) = NkB(T2 − T1),

U1 = U2; P1

P2
= V2

V1
; PV = const. ,



(7.134)

The case of the ideal gas follows from ln Zg = const. and λ2 ∼ 1/T  (6. 31):

(7.135)

with κ = 5/3 = CP/CV . Since T/V ∼ P  holds for the ideal gas, it follows

(7.136)

For the ideal gas the following holds: T/(PV ) = const. → (T/(PV ))κ = const. or 
V κ ∼ T κP −κ and it follows with (7.136)

(7.137)

Together we get

(7.138)

Since δW = dU  (for δQ = 0) we get for the work done on the system

(7.139)

7.12	 The	Carnot	Cycle
 A periodic machine, that converts thermal energy into mechanical energy, must have at least two
heat reservoirs. The �irst heat bath provides energy to the system (heating phase) while the
second heat bath absorbs energy from the system (cooling phase, e.g. in a cooling tower). We now
want to discuss as an easy process the Carnot	cycle. It consists of two isotherms (dT = 0) and
two adiabates (dS = 0, δQ = 0) (see Fig. 7.6).

dS = 0 → δQ = 0.

V
λ3 = const. → V T 3/2 = const. → TV 2/3 = TV κ−1 = T

V
V κ = const.

PV κ = const.

T κP −(κ−1) = const. → ( T
P (κ−1)/κ ) = const.

P1

P2
= ( V2

V1
)
κ

; T1

T2
= ( V2

V1
)

(κ−1)

= ( P1

P2
)

(κ−1)/κ

.

W12 = U2 − U1 = CV (T2 − T1).



Fig.	7.6 Illustration of a Carnot cycle with two isotherms and two adiabates

Heat is only transferred when they come into contact with both of the heat reservoirs (of
temperatures T1,T2). From

(7.140)

we get

(7.141)

Since

(7.142)

the work absorbed by the system is

(7.143)

Now let’s assume Q1 > 0, Q2 < 0. The ef�iciency	coef�icient η is the ratio of the work done
on the system (−W) to the amount of heat absorbed (Q1). We get

(7.144)

which implies that the ef�iciency coef�icient η < 1. For T1 > T2 the ef�iciency η becomes
positive, i.e. the machine converts the absorbed heat (partially) into work. The ef�iciency increases
with increasing temperature difference.

For T1 < T2 the ef�iciency η becomes negative, such that the machine does not produce work,
but transforms mechanical work into heat. The heat bath with the higher temperature T2 is
supplied by heat and the heat bath 1 is cooled down. One can use this process (heat pump) to heat
a house. This is technically interesting because we have to supply less mechanical energy for the
heating than the gain in heat −Q2 for the house. An electric heat pump is thus cheaper than a
direct electric heating.

The second law of thermodynamics provides all of these statements without referring to a
special system (gas, crystal etc.). The Carnot machine is therefore universal. The ef�iciency
coef�icient

(7.145)

is even the ef�iciency of all reversible machines with two heat reservoirs.

7.13	 The	Otto	Engine
 We now consider a circular process, which simulates the situation for an Otto engine, and consists
of four sub-processes (see Fig. 7.7):

∮ dS = 0

Q1

T1
+ Q2

T2
= 0; → Q2 = − T2

T1
Q1.

∮ dU = 0 = ∮ (δQ + δW) = Q1 + Q2 + W

W = −(Q1 + Q2) = −Q1 (1 − T2

T1
).

η = − W
Q1

= 1 − T2

T1
< 1,

η = 1 − T2

T1



1→ 2 : Adiabatic compression (dS = 0) from volume V1 → V2

2→ 3: At constant volume V2 the amount of heat Q23 (due to the explosion of the gas mixture)
is transferred

3→ 4 : Adiabatic expansion to volume V1 (at dS = 0)
4→ 1: At constant volume V1 the amount of heat −Q41 is released.

Fig.	7.7 Illustration of a circular process for the simulation of an Otto engine with 2 isochoric and 2 adiabatic processes

To calculate the ef�iciency, we �irst determine the entropy change of the two isochoric
processes (V = const):

(7.146)

ΔS14 = CV ln
U1 + Q14

U1
.

Since

(7.147)

we obtain

(7.148)

This results in the ef�iciency coef�icient for the cycle process—using the adiabatic relations for an
ideal classical gas—

(7.149)

The ef�iciency coef�icient η consequently increases with higher compression.

ΔS23 = ∫ 3
2 dS = ∫ 3

2
δQ
T

= CV ∫ 3
2

dT
T

= CV ln ( T3

T2
) = CV ln U3

U2
= CV ln U2+Q23

U2
,

ΔS23 = ΔS14 → ln ( U2+Q23

U2
) =ln ( U1+Q14

U1
);

U2(U1 + Q14) = U1(U2 + Q23) → U2Q14 = U1Q23 → T2Q14 = T1Q23.

η = W1234

Q23
= Q23−Q14

Q23
= 1 − T1

T2
= 1 − ( P1

P2
)

(κ−1)/κ

= 1 − ( V2

V1
)

(κ−1)

.



In summarizing this chapter we have established the relation of the Lagrange parameters to
the temperature, chemical potential and the pressure. Furthermore, thermodynamical potentials
have been introduced for the different ensembles, that are functions of the natural variables as
well as their total differentials. The latter lead to various Maxwell relations between
thermodynamic quantities. We have formulated (and proven) the main laws of thermodynamics
and discussed in particular the speci�ic heat and the thermal expansion coef�icient. It was shown
that the classical ideal gas violates in particular the 3rd law of thermodynamics. Finally, we have
discussed different changes of state and computed the ef�iciency coef�icient for the Carnot cycle
and the Otto engine.
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In this chapter we want to examine the connection between spontaneous	�luctuations
of physical quantities around their average values in statistical equilibrium and forced
deviations from the average values due to disturbances of the balance by	external
perturbations. It will show up, that these two phenomena are closely linked for weak
external perturbations and �ind their expression in the �luctuation-dissipation
theorem. To this aim we will introduce the thermodynamic perturbation theory and
compute response functions for various examples.

8.1	 Fluctuations
In Chap. 8 we have made the fundamental assumption, that macroscopic properties of a
physical system can be calculated in the form of average values over the statistical
ensemble representing the total system. As a measure of the quality of this
approximation one can use the relative	quadratic	�luctuation

(8.1)

with

(8.2)

of an observable A. Higher order �luctuations are required in rare cases. We consider as
two important concrete cases �luctuations	in	energy	and	particle	number.

For the internal energy U of a canonical ensemble we have found

(8.3)

We get the �luctuation by differentiating (8.3) with respect to β:

(8.4)

ΔA
⟨A⟩

(ΔA)2 = ⟨A2⟩ − ⟨A⟩2

U = Tr(H exp(−βH))
Tr(exp(−βH))

.

∂U
∂β

= − Tr(H 2exp(−βH))
Tr(exp(−βH))

+ [Tr(H exp(−βH))]2

[Tr(exp(−βH))]2

= −⟨H 2⟩ + ⟨H⟩2 = −(ΔH)2
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therefore (with ∂T/∂β = −kBT
2)

(8.5)

With (7. 99) this leads to

(8.6)

Since U and CV  grow as extensive quantities—in contrast to T—linear with particle
number N, the relative �luctuation depends on the number of particles as

(8.7)

such that for large systems the energy �luctuations are negligible compared to the
total energy, if one is not in the immediate vicinity of a phase transition, where CV  may
become singular.

Example: For the ideal classical gas we have found

(8.8)

such that

(8.9)

The mean-square �luctuation of the particle number in the grand-canonical ensemble
can be calculated in analogy from

(8.10)

then we get in correspondence to (8.5):

(8.11)

In analogy to (8.6) ΔN̂  can be written (with the isothermal	compressibility)

(ΔH)2 = − ∂U
∂β

= − ∂U
∂T

∂T
∂β

= kBT
2 ∂U

∂T
= kBT

2 CV .

( ΔH
⟨H⟩
)

2
= kBT

2CV

U 2 .

ΔH
⟨H⟩

∼ 1
√N

,

⟨H⟩ = U = 3
2 N kBT ,

ΔH
⟨H⟩

= ( kBT
2CV

(3/2NkBT )2 )
1/2

= ( k2
B
T 23/2N

(3/2NkBT )2 )
1/2

= √ 2
3

1
√N

.

⟨N̂⟩ = Tr(N̂exp(−αN̂−βH))

Tr(exp(−αN̂−βH))
;

(ΔN̂)
2

= − ∂⟨N̂⟩
∂α .



(8.12)

as (proof see below)

(8.13)

or with α = −βμ (∂/∂α = −1/β ∂/∂μ)

(8.14)

Since V is an extensive quantity, but T and κT  are intensive quantities, the remaining
result is (N =: ⟨N̂⟩)

(8.15)

Addition: (proof of equation (8.13))
For homogeneous systems we have for extensive quantities such as the average

energy U = U(S,V ,N) :

(8.16)

since S, V, N are also extensive. Speci�ically, for ν = 1 + ϵ, |ϵ| ≪ 1 follows by Taylor
expansion in (8.16):

(8.17)

A comparison of the factors in ϵ gives

(8.18)

if we consider case V from the table (7. 65). Comparing the total differential of U
according to (8.18) with the result of table (7. 65), then the Gibbs–Duhem	relation
results:

(8.19)

Since in (8.19) T ,P ,μ are the natural variables, we have written volume and particle
number as average values V , N . For isothermal (dT = 0), quasi-static processes
follows:

(8.20)

κT := − 1
V
( ∂V

∂P )
T

( ∂N
∂μ )

T
= N 2

V
κT

(ΔN̂)
2

N 2 = kBT

N 2 ( ∂N
∂μ ) = kBT κT

V
.

ΔN̂

⟨N̂⟩
∼ 1

√N
.

νU = U(νS, νV , νN),

(1 + ϵ)U = U + ϵ(S[ ∂U
∂S

]
V ,N

+ V [ ∂U
∂V

]
S,N

+ N[ ∂U
∂N

]
S,V
).

U = TS − PV + μN ,

SdT − V dP + N dμ = 0.



or

(8.21)

Since P in homogeneous systems, apart from T, only depends on the density N /V , we
get

(8.22)

(8.23)

As an example for formula (8.14) we consider an ideal classical gas with 
V = N kBT/P . Then:

(8.24)

such that

(8.25)

Result: For macroscopic systems the �luctuations of energy and particle number
are negligible compared to the energy and particle number of the systems.

Therefore, for macroscopic systems it is practically meaningless whether one
describes the system by the microcanonical, the canonical or the grand-canonical
ensemble, as long as one is only interested in statements about the system in
equilibrium. The choice of the ensemble—describing the system—then can be done
from the point of view of simpler calculations. On the other hand, �luctuations are
important when we consider small deviations from the equilibrium by external
perturbations. Examples for this are Eqs. (8.6) and (8.14), in which the speci�ic heat or
the isothermal compressibility are linked with the �luctuations of energy and particle
number. Speci�ic	heat	and	compressibility	characterize	the	response	of	the	system
to	external	perturbation	in	the	form	of	heat	supply	or	pressure.

We now want to investigate the connection between �luctuations and the response of
the system for (weak) external perturbations.

8.2	 Thermodynamic	Perturbation	Theory
We �irst consider the case of a time-independent perturbation. Let’s decompose the
entire Hamiltonian as

V dP = N dμ

V ( ∂P
∂N )

T
= N ( ∂μ

∂N )
T

.

V ( ∂P
∂V )

T
= −N ( ∂P

∂N )
T

,

κT =: − 1
V
( ∂V

∂P )
T

= V

N 2 ( ∂N
∂μ )

T
.

κT = − 1
V
( ∂V

∂P )
T

= N kBT
P 2V

= 1
P

,

(ΔN̂)
2

N 2 = kBT
PV

= kBT
N kBT

= 1
N

.



(8.26)

where H0 can be treated exactly and W is a small time-independent perturbation (
W ≠ W(t)). We describe the system by a canonical ensemble. Then it makes sense to
separate the factor exp (−β H0) from the operator exp (−β H), which can be treated
exactly according to assumption:

(8.27)

To determine σ(β) we differentiate (8.27) with respect to β and get:

∂

∂β
exp {−β[H0 + W ]} =

∂

∂β
exp {−βH0} ⋅ σ(β)

(8.28)

After inserting (8.27) into (8.28) (−W exp (−βH0)σ(β) =exp (−βH0)∂σ/∂β) and
multiplication by exp (βH0) the Bloch	equation results:

(8.29)

with the abbreviation

(8.30)

The Bloch equation is formally structured in analogy to the Dirac picture of quantum
theory (see quantum mechanics). Consequently, one can formally transfer the Dirac
perturbation	theory: We transfer (8.29) with the boundary condition—following from
(8.27)—

(8.31)

into an integral equation

(8.32)

which can be solved by iteration:

H = H0 + W ,

exp {−β[H0 + W ]} =exp {−βH0} ⋅ σ(β).

= −[H0 + W ] exp {−β[H0 + W ]} = −H0 exp {−βH0}σ(β)+ exp {−βH0} ∂σ
∂β

.

∂σ
∂β = − exp {βH0} W exp {−βH0}σ(β) = −W(β)σ(β)

W(β) =exp {βH0} W exp {−βH0}.

σ(β = 0) = 1

σ(β) = 1 − ∫ β

0 W(β′)σ(β′) dβ′,



(8.33)

To calculate the canonical partition function Zc we use the basis of the eigenstates 
|Φi⟩ of H0 with energies ϵi,

(8.34)

Thus we need the diagonal elements of σ(β) in the basis of the eigenstates of H0. For
these matrix elements we obtain from (8.33):

(8.35)

with

⟨Φi|∫
β

0
exp {βϵi}W exp {−βϵi}dβ|Φi⟩ = βWii.

Furthermore, the completeness of the intrinsic states has been exploited in the 2nd
order contribution:

(8.36)

with Wij = ⟨Φi|W |Φj⟩. It is worth noting, furthermore, that the terms with i = j and
with i ≠ j had to be integrated separately. The remaining integrals give

(8.37)

=
1

2
|Wii|

2β2 + β∑
j≠i

|Wij|2

ϵj − ϵi
+∑

j≠i

|Wij|
2 exp (β(ϵi − ϵj)) − 1

(ϵj − ϵi)
2

.

σ(β) = 1 − ∫ β

0 W(β′)dβ′ + ∫ β

0 W(β′) ∫ β′

0 W(β′′) dβ′′dβ′ − ⋯ .

Zc = ∑i⟨Φi|exp {−βH0}σ(β)|Φi⟩ = ∑i exp (−βϵi)⟨Φi|σ(β)|Φi⟩

= ∑i exp (−βϵi)σ(β)ii.

σ(β)ii = 1 − βWii + 1
2 β2|Wii|

2

−∑j≠i |Wij|
2( β

(ϵi−ϵj)
+

1−exp{β(ϵi−ϵj)}

(ϵi−ϵj)
2 )…

Iii = (∫ β

0 W(β′) ∫ β′

0 W(β′′)dβ′′dβ′)
ii

= ∑j⟨Φi| ∫
β

0 exp (β′H0)W exp (−β′H0)|Φj⟩

⟨Φj| ∫
β′

0 exp (β′′H0)W exp (−β′′H0)|Φi⟩dβ
′′dβ′

= |Wii|2 ∫ β

0 ∫ β′

0 dβ′′dβ′

+∑j≠i |Wij|
2 ∫ β

0 exp (β′(ϵi − ϵj)) ∫ β′

0 exp (β′′(ϵj − ϵi))dβ′′dβ′

Iii = 1
2 |Wii|2β2 + ∑j≠i |Wij|

2 ∫ β

0 exp (β′(ϵi − ϵj))
exp(β′(ϵj−ϵi))−1

(ϵj−ϵi)
dβ′



When calculating Zc with σ(β) (8.35) the last term of (8.37) disappears exactly, since i, j
run through the same values and W = W †,

(8.38)

It remains

(8.39)

With the abbreviations

(8.40)

we obtain a more suitable form for the further evaluation:

(8.41)

The explicit result for the last term in (8.41) is derived as

(8.42)

or

(8.43)

The term linear in W is just the average of W in the ensemble described by H0,

(8.44)

To evaluate the remaining terms in (8.41) we assume that1 β(ϵi − ϵj) ≪ 1 such that (in
leading order in β)

(8.45)

= pi(1− exp [β(ϵi − ϵj)]) ≈ −piβ(ϵi − ϵj),

∑
i≠j

|Wij|
2 exp (−βϵi)

[1−exp{β(ϵi−ϵj)}]

(ϵi−ϵj)
2

= ∑i≠j |Wij|
2( exp(−βϵi)

(ϵj−ϵi)
2 −

exp(−βϵj)

(ϵj−ϵi)
2 ) ≡ 0.

Zc = ∑i exp (−βϵi)(1 − βWii + 1
2 β2|Wii|

2 − β∑j≠i

|Wij|2

(ϵi−ϵj)
…) .

Z 0
c = ∑i exp (−βϵi);pi = exp(−βϵi)

∑jexp(−βϵj)
= exp(−βϵi)

Z 0
c

Zc = Z 0
c (1 − β∑iWii pi + 1

2 β2 ∑i{W
2
ii pi − ∑j≠i

|Wij|2⋅(pi−pj)

β(ϵi−ϵj)
}).

∑j≠i
pi|Wij|

2

(ϵi−ϵj)
= ∑j≠i

(pi−pj)|Wij|
2

(ϵi−ϵj)
+ ∑j≠i

pj|Wij|
2

(ϵi−ϵj)

= ∑j≠i
(pi−pj)|Wij|

2

(ϵi−ϵj)
− ∑j≠i

pj|Wij|
2

(ϵj−ϵi)
,

2∑j≠i
pi|Wij|

2

(ϵi−ϵj)
= ∑j≠i

(pi−pj)|Wij|
2

(ϵi−ϵj)
.

⟨W⟩0 = ∑i pi Wii.

pi − pj = exp(−βϵi)−exp(−βϵj)
∑kexp(−βϵk)

= exp(−βϵi)(1−exp(β(ϵi−ϵj))
∑kexp(−βϵk)



thus

(8.46)

Due to the completeness of the eigenstates |Φi⟩ to H0 we have:

(8.47)

Thus (8.41) achieves the transparent form for Zc:

(8.48)

and the free energy F = −kBT ln Zc = −β−1 ln Zc takes the form

(8.49)

With the expansion ln (1 + x) = −∑n=1 (−1)nxn/n ≈ x − 1/2x2 ⋯ we obtain
for x = (−β⟨W⟩0 + 1/2β2⟨W 2⟩0)

(8.50)

≈ F 0+ < W⟩0 −
1

2
β⟨W 2⟩0 +

1

2
β⟨W⟩2

0) …

= F 0 + ⟨W⟩0 −
1

2
β(⟨W 2⟩0 − ⟨W⟩2

0) ⋯ = F 0 + ⟨W⟩0 −
1

2
β⟨ΔW 2⟩0 ⋯

in �irst order in β.

Thus we can express the corrections to the free energy F—caused by the
perturbation W—by the average of W and its quadratic �luctuation in the undisturbed
equilibrium, described by the statistical operator 
ρ0 =exp (−βH0)/Tr(exp (−βH0)).

We apply the formalism above to the case that an external force f (e.g. a
homogeneous magnetic or electric �ield) acts on an observable q of the system (e.g.
magnetic moment or electric current density), and ask how (small) changes of f affect
the system. To this aim we write in (8.26)

(8.51)

∑j≠i
|Wij|

2(pi−pj)
[β(ϵi−ϵj)]

≈ −∑j≠i pi|Wij|
2.

⟨Φi|W 2|Φi⟩ = ∑j⟨Φi|W |Φj⟩⟨Φj|W |Φi⟩ = W 2
ii + ∑j≠i |Wij|

2.

Zc = Z 0
c (1 − β⟨W⟩0 + 1

2 β2⟨W 2⟩0 …)

F = − 1
β
(ln Z 0

c + ln [1 − β⟨W⟩0 + 1
2
β2⟨W 2⟩0 …])

F = F 0 + 1
β
(−(−β⟨W⟩0 + 1

2 β
2⟨W 2⟩0) + 1

2 (−β⟨W⟩0 + 1
2 β

2⟨W 2⟩0)
2

…)

H = H0 + W ; W = −q δf,



where δf are the small changes which describe the external force. The associated
thermodynamic potential is the free enthalpy G = F + PV , which differs from F by the
potential energy due to the external force. According to (8.50) we get

(8.52)

where χ is the generalized	susceptibility,

(8.53)

described by the product of β and the mean square �luctuation of q in the
unperturbed equilibrium ensemble.

8.3	 Linear	Response
We now want to investigate the changes of the average value of an observable ⟨q⟩, if a
time-dependent force f(t) acts on q.

Examples: Current density under the in�luence of a time-dependent electric �ield;
magnetic moment under the in�luence of a time-dependent magnetic �ield (

W = −d ⋅ δE or W = −
→
μ ⋅ δ

→
B).

Then in

(8.54)

the statistical operator has to be determined from (see Eq. (3. 4)):

(8.55)

if H0 is the complete Hamiltonian of the system without any external force.
For the approximate calculation of (8.54) we use the Dirac	picture	of	time-

dependent	perturbation	theory (see quantum mechanics):

(8.56)

(8.57)

and obtain

G = G0 − ⟨q⟩0δf − 1
2 β⟨Δq2⟩0 (δf)2 ⋯

= G0 − ⟨q⟩0δf − 1
2 χ (δf)2 ⋯ ,

χ = β⟨(q − ⟨q⟩0)2⟩0 = β⟨Δq2⟩0,

⟨q(t)⟩ = Tr(q ρ(t))

∂
∂t ρ = − i

ħ [H, ρ(t)] = − i
ħ [H0 + W , ρ(t)] = − i

ħ [H0 − q f(t), ρ(t)],

q(t) =exp { i
ħ H0t} q exp {− i

ħ H0t},

σ(t) :=exp { i
ħ H0t} ρ(t) exp {− i

ħ H0t},



(8.58)

σ(t) is easily found to obey the differential equation:

(8.59)

if we treat f(t) as a classical function. As an initial condition we want to require, that
the system is in thermal equilibrium at temperature T before switching on the
perturbation f(t) ,

(8.60)

For suf�iciently weak forces f(t) we can restrict to the �irst two terms of the perturbation
theory,

(8.61)

and obtain with

(8.62)

= Tr{q(t)q(t′)ρ0 − q(t′)q(t)ρ0} = Tr{[q(t), q(t′)]ρ0}

(cyclic invariance of the trace) for the average value

(8.63)

= ⟨q⟩0 +
i

ħ
∫

t

−∞
Tr([q(t), q(t′)]ρ0) f(t′) dt′

= ⟨q⟩0 +
i

ħ
∫

∞

−∞
Θ(t − t′)⟨[q(t), q(t′)]⟩0 f(t′) dt′.

In (8.63) Θ denotes the Theta-function:

(8.64)

which allows to extend the upper integral limit in (8.63) to ∞.
We now take advantage of the fact that the undisturbed ensemble ρ0 is stationary, i.e.

(8.65)

⟨q(t)⟩ = Tr{q(t)σ(t)};

∂
∂t σ(t) = i

ħ [q(t),σ(t)] f(t),

ρ(−∞) = ρ0 = exp(−βH0)
Tr(exp(−βH0)) .

σ(t) = ρ0 + i
ħ ∫ t

−∞[q(t′), ρ0] f(t′) dt′ … ,

Tr{q(t)[q(t′), ρ0])} = Tr{q(t)q(t′)ρ0 − q(t)ρ0q(t′)}

⟨q(t)⟩ = Tr(q(t)σ(t)) = ⟨q⟩0 + i
ħ ∫ t

−∞
Tr(q(t)[q(t′), ρ0]) f(t′) dt′

Θ(t − t′) = 1 if t ≥ t′;Θ(t − t′) = 0 else,

′ ′



and perform a Fourier transformation in (8.63). Introducing:

(8.66)

(8.67)

(8.68)

we get—after multiplying (8.63) by exp (iωt) and integration [−∞, ∞] … dt—the
equivalent relationship

(8.69)

In (8.69) the response	function of the system r(ω) appears as a multiplicative
function. For any external (small) perturbation f(ω), the response function r(ω) is a
characteristic function of the system, which we will examine in more detail below.

Note: The transition (8.63) → (8.69) is denoted by convolution	theorem.
Inserting (8.65) into (8.63) we obtain a convolution integral of the type:

(8.70)

After Fourier transformation of the quantities a(t), b(t) and c(t) we obtain for the
Fourier transform a(ω), b(ω) and c(ω) the simple algebraic relation

(8.71)

which is easy to prove explicitly. This folding theorem has been used when passing from
(8.63) to (8.69). It should be noted that with regards to the integration limits in (8.68) 
(τ =: t − t′) :

(8.72)

⟨[q(t), q(t′)]⟩0 = ⟨[q(t − t′), q(0)]⟩0,

qω = q(ω) =: ∫ ∞
−∞(⟨q(t)⟩ − ⟨q⟩0) exp (iωt) dt,

fω = f(ω) =: ∫ ∞
−∞ f(t) exp (iωt) dt

r(ω) =: i
ħ ∫ ∞

0 ⟨[q(t), q(0)]⟩0 exp (iωt) dt

q(ω) = ∫ ∞
−∞ dt exp (iωt)(⟨q(t)⟩ − ⟨q⟩0)

= i
ħ ∫ ∞

−∞ dt exp (iωt) ∫ ∞
−∞ Θ(t − t′)⟨[q(t − t′), q(0)]⟩0 f(t′) dt′

= r(ω) f(ω).

a(t) = ∫ ∞
−∞ b(t − t′) c(t′) dt′.

a(ω) = b(ω)c(ω),

r(ω) = i
ħ ∫ ∞

−∞ ⟨[q(τ), q(0)]⟩0 exp (iωτ)Θ(τ) dτ



=
i

ħ
∫

∞

0
⟨[q(τ), q(0)]⟩0 exp (iωτ) dτ.

8.4	 Examples
To illustrate the role of the response function r(ω), let’s look at some simple examples.

1. The equation of motion of a damped harmonic oscillator under the in�luence of an
external force is:

(8.73)

After Fourier transformation of q(t) and f(t) we obtain

(8.74)

or after comparison with (8.69),

(8.75)

with the imaginary part

(8.76)

2. In Brownian	motion we investigate the motion of macroscopic particles (e.g. dust
particles) in a gas or liquid due to thermal motion of the molecules of the gas or liquid,
that collide with the macroscopic particles. The force acting on a macroscopic particle is
divided into a friction	force and a stochastic force, whose temporal average value
vanishes:

(8.77)

with the time average of f(t)

(8.78)

For this case we obtain in analogy to example 1 (ω0 = 0):

(8.79)

m( d2

dt2 q(t) + ω2
0q(t))+ γ d

dt
q(t) = f(t).

{m(ω2
0 − ω2) − iγω}q(ω) = f(ω),

r(ω) = 1
m(ω2

0−ω2)−i γω
=

m(ω2
0−ω2)+i γω

m2(ω2
0−ω2)

2
+γ 2ω2

,

I(r(ω)) = γω

m(ω2
0−ω2)

2
+γ 2ω2

.

m d2

dt2 q + γ d
dt

q = f(t)

f̄ = 0.

r(ω) = 1
−mω2−i γω

.



3. In metals the electrical	conductivity is traced back to the existence of free
electrons. The equation of motion for a conduction electron i is:

(8.80)

where Ei is the electric �ield acting on the electron i and the friction term (∼ vi) takes
care of the fact, that the conduction electrons lose energy through collisions with the
ions of the grid.

From (8.80) we obtain for the current density (jf = env):

(8.81)

where we have identi�ied the average over Ei with the macroscopic �ield E , while n is
the electron density. For static E  �ields (8.81) has the stationary solution (djf/dt = 0):

(8.82)

with the DC	conductivity

(8.83)

For a time-periodic �ield

(8.84)

we get for the solution of (8.81)

(8.85)

Equation (8.81) then gives the relation

(8.86)

with the frequency-dependent	conductivity (response function)

(8.87)

here the attenuation constant τ  is determined by

(8.88)

M
dvi

dt
+ ξvi = eEi,

djf

dt
+ ξ

M
jf = n e2

M
E ,

jf = ne2

ξ
E = σ0E

σ0 = ne2

ξ
.

E = E0 exp (−iωt)

jf = j0 exp (−iωt).

jf = σ(ω)E = r(ω)E

σ(ω) = σ0

1−iωτ
= σ0(1+iωτ)

1+ω2τ 2 ;

τ = M
ξ

.



For low frequencies (ωτ ≪ 1) the conductivity σ(ω) becomes real, σ(ω) ≈ σ0, while
vice versa for high frequencies (ωτ ≫ 1) σ(ω) becomes purely imaginary, such that jf
and E  are out of phase with each other by π/2.

4. We continue to look at a simple example for the resistance	noise:
A circuit contains a capacity C and an ohmic resistance R, which is kept at a

temperature T by a heat bath (see Fig. 8.1).

Fig.	8.1 Illustration of a circuit with a capacitor C and a resistance R kept on temperature T by a heat bath

If at the ends of the resistance R there is a voltage difference U, the average current in
the circuit is J = U/R. Now the electrons—carrying the current—in addition to the
thermal motion are subject to irregular scatterings with the atoms of the conductor.
Hence the current �luctuates around the average U/R. In reality we expect the current

(8.89)

where Jth. depends on the thermal motion of the electrons at temperature T; Jth.

therefore has nothing to do with the voltage U. With the connection of electric current
change of the charge Q per unit time,

(8.90)

we obtain (by multiplication with R)

(8.91)

with the �ictitious voltage

(8.92)

After Fourier transformation of U and Uth. we get

(8.93)

and by comparison with (8.69)

U
R

= J + Jth.,

J = − d
dt

Q = −C d
dt

U ,

U + RC d
dt

U = Uth.

Uth. = R Jth.

(1 − iωRC)U(ω) = Uth.(ω)



(8.94)

In all four examples the statistics only enter via the friction γ or the resistance R;
that’s why it’s so easy to determine the response function r(ω).

8.5	 Fluctuation-Dissipation	Theorem
We now want to prove the connection between �luctuations in equilibrium—as

stated at the beginning—with forced deviations from equilibrium due to time-
dependent perturbations. The result will be a simple relationship between the
�luctuations	of	the	observables, on which the perturbation acts, and the dissipative
part	of	the	response	function r(ω), which is responsible for the conversion of the work
done by the external force on the system to internal energy.

For this purpose we introduce the spectral	functions(ω) by

(8.95)

s(ω) is a real function, i.e. s(ω) = s∗(ω). To prove this, we form ⟨q(t)q(0)⟩0 in the
energy representation with q(t) =exp (i/ħH0t)q exp (−i/ħH0t),

(8.96)

=
1

ħ
∑
i,j

exp {−βϵi}

(∑k exp (−βϵk))
|⟨Φi|q|Φj⟩|

2 exp ( i

ħ
[ϵi − ϵj]t).

The t integration in (8.95) then yields a δ-distribution in the argument (ħω + ϵi − ϵj), i.e
�inally

(8.97)

and is real as claimed. Another necessary relation—for the proof of the �luctuation-
dissipation theorem—follows immediately by the substitution ϵi → ϵi = ϵj + ħω,

(8.98)

For the proof, note that

r(ω) = 1
1−iωRC

= 1+iωRC

1+(ωRC)2 .

s(ω) = 1
2πħ ∫ ∞

−∞ ⟨q(t)q(0)⟩0 exp (iωt) dt

= 1
2π ∫ ∞

−∞ s(t) exp (iωt) dt.

s(t) = 1
ħ ⟨q(t)q(0)⟩0 = 1

ħ ∑i
exp{−βϵi}

(∑kexp(−βϵk))
∑j⟨Φi|q(t)|Φj⟩⟨Φj|q|Φi⟩

s(ω) = ∑i,j|⟨Φi|q|Φj⟩|
2
δ(ħω + ϵi − ϵj)

exp(−βϵi)
∑

k
exp(−βϵk) ≥ 0,

s(−ω) =exp (−βħω)s(ω).



(8.99)

and that |⟨Φi|q|Φj⟩|
2 is symmetric with respect to i, j and by virtue of the δ-distribution

(8.100)

We now need the connection of s(ω), s(−ω) with the complex response function r(ω).
We separate the latter into real and imaginary parts

(8.101)

where d(ω) is the dispersive, a(ω) the dissipative part (see explanation below).
Using (8.68) we get

(8.102)

=
1

2πiħ
(i∫

∞

0
⟨[q(t), q(0)]⟩0 exp (iωt)dt + i∫

∞

0
⟨[q(t), q(0)]⟩0 exp (−iωt)dt)

=
1

2πħ
∫

∞

−∞
⟨[q(t)q(0) − q(0)q(t)]⟩0 exp (iωt)dt

=
1

2πħ
∫

∞

−∞
(⟨q(t)q(0)⟩0 exp (iωt) − ⟨q(0)q(−t)⟩0 exp (−iωt))dt

In (8.102) we have used:

(8.103)

due to the invariance with respect to time translation in the trace formation in the
stationary ensemble ρ0. From (8.101) and (8.98) we obtain

(8.104)

and

(8.105)

δ(−ħω + ϵi − ϵj) = δ(ħω + ϵj − ϵi),

exp (−βϵi) →exp [−β(ϵj + ħω)].

r(ω) = d(ω) + iπ a(ω),

1
π

Ir(ω) = a(ω) = 1
2πi (r(ω) − r∗(ω))

= 1
2πħ ∫ ∞

−∞(⟨q(t)q(0)⟩0 exp (iωt) − ⟨q(t)q(0)⟩0 exp (−iωt))dt

= s(ω) − s(−ω).

⟨q(t)q(0)⟩0 = ⟨q(0)q(−t)⟩0

a(ω) = s(ω)[1− exp (−βħω)]

s(ω) + s(−ω) = s(ω)[1+ exp (−βħω)] = a(ω)
[1+exp(−βħω)]
[1−exp(−βħω)] .



With the identity

(8.106)

we get the general �luctuation-dissipation	theorem:

(8.107)

On the left side of (8.107) we have the (negative) Fourier transform of the �luctuation
for ω ≠ 0 (note that q(0) ≡ q and ⟨f(q(t))⟩0 = ⟨f(q)⟩0))

(8.108)

= 2⟨q2⟩0 − ⟨(q(t) − q)2⟩0 = 2⟨q2⟩0 − ⟨Δq2⟩0.

On the right side we have the dissipative part of the response function r(ω) (i.e. a(ω)),
apart from temperature and frequency-dependent terms.

We still want to convince ourselves that a(ω) can be identi�ied with the dissipative
part. To this aim we investigate the work done on the system by the external force f(t),
which is converted to internal energy of the system. We form with (8.55)

(8.109)

= −
i

ħ
Tr([H0,H0 − f(t)q]ρ) =

i

ħ
Tr([H0, q]f(t)ρ(t)) = ⟨q̇⟩f(t).

The total energy delivered to the system—after t integration—is:

(8.110)

considering
(8.111)

1+exp(−x)
1−exp(−x) =

exp(x)+1−1+1
exp(x)−1 = 1 + 2

exp(x)−1

ħ
2 [s(ω) + s(−ω)] =

a(ω)
ω
( ħω

2 + ħω
(exp(βħω)−1) ).

⟨q(t)q + qq(t)⟩0 ≡ −⟨q(t)2 − q(t)q − qq(t) + q2⟩0 + ⟨q(t)2⟩0 + ⟨q2⟩0

d
dt

⟨H0⟩ = Tr(ρ̇H0) = − i
ħ Tr([H0 − f(t)q, ρ] H0)

⟨H0(∞)⟩ − ⟨H0(−∞)⟩ = ∫ ∞
−∞⟨q̇⟩f(t) dt

= − i
2π ∫ ∞

−∞ ω q(ω)(∫ ∞
−∞ exp (−iωt)f(t) dt) dω

= − i
2π ∫ ∞

−∞ ω q(ω) f(−ω) dω

= − i
2π

∫ ∞
−∞

ω q(ω)f ∗(ω) dω = − i
2π

∫ ∞
−∞

ω|f(ω)|2
r(ω) dω

= ∫ ∞
0

ω|f(ω)|2
a(ω) dω > 0,



since f(t) is real, as well as the fact (which follows directly from (8.68) and (8.103)),
since

(8.112)

Because of

(8.113)

only a(ω) contributes to the integral (8.110); the even function—after multiplication
by ω|fω|2—gives no contribution (odd integrand).

As an instructive example for the real and imaginary part of the response function 
r(ω) we consider the refractive	index	of	a	substance: The real part of the refractive
index indicates how a light beam is refracted when passing a boundary between the
vacuum and a substance; this refraction is generally frequency dependent: the substance
shows dispersion. Therefore, the real part of r(ω) is generally referred to as the
dispersive part. When passing through the substance the light beam is also weakened
in its intensity, the substance absorbs radiation energy. This absorption is also
frequency dependent and is described by the imaginary	component	of	the	refractive
index.

In the classical	limit ħω ≪ kBT  or βħω ≪ 1 we obtain

(8.114)

such that (8.107) takes the form

(8.115)

8.6	 Generalization	of	the	Classical	Equipartition	Theorem
From the �luctuation-dissipation theorem (8.107) follows by integration over ω

(8.116)

= ħ∫
∞

0
{s(ω) + s(−ω)}dω = ħ∫

∞

−∞
s(ω)dω

f ∗(ω) = f(−ω),

r∗(ω) = r(−ω).

d(ω) = d(−ω);a(ω) = −a(−ω)

s(ω) + s(−ω) = a(ω) (1+exp(−βħω))
(1−exp(−βħω))

≈ a(ω) 2
βħω = a(ω) 2 kBT

ħω ,

ħ
2

(s(ω) + s(−ω)) = a(ω)
ω

kBT .

2 ∫ ∞
0

a(ω)
ω

{ ħω
2

+ ħω
exp(βħω)−1

}dω



= ∫
∞

−∞
∫

∞

−∞
⟨q(t)q(0)⟩0 exp (iωt)

dω

2π
dt

(according to (8.95))

= ∫
∞

−∞
⟨q(t)q(0)⟩0δ(t) dt = ⟨q(0)2⟩0 = ⟨q2⟩0.

A corresponding relation is obtained for the average value of the canonically conjugate
variable p to q. For the derivation we use:

(8.117)

from which follows by iteration

(8.118)

With (8.96) we get

(8.119)

= −
1

ħ

∑i,j exp (−βϵi)

(∑k exp (−βϵk))
|⟨Φi|q̇|Φj⟩|

2 exp {
i

ħ
(ϵi − ϵj)t} = −

1

ħ
⟨q̇(t)q̇(0)⟩0

=
1

ħ

∑i,j exp (−βϵi)

(∑k exp (−βϵk))
⟨Φi|

d

dt
q̇|Φj⟩⟨Φj|q|Φi⟩ exp {

i

ħ
(ϵi − ϵj)t}

=
1

ħ
∑i exp (−βϵi)

(∑k exp (−βϵk))
⟨Φi|

d

dt
q̇(t)q|Φi⟩ =

1

ħ
⟨
d

dt
q̇(t)q(0)⟩

0

and (8.95) (after partial integration)

(8.120)

By integrating over ω (according to (8.116)) we get

(8.121)

= ⟨q̇2⟩0 =: ⟨p2⟩0/m2,

if we follow (8.119),

⟨Φi|q̇(t)|Φj⟩ = i
ħ ⟨Φi|[H0, q(t)]|Φj⟩ = i

ħ (ϵi − ϵj)⟨Φi|q(t)|Φj⟩,

⟨Φi|
d
dt
q̇(t)|Φj⟩ = −

(ϵi−ϵj)
2

ħ2 ⟨Φi|q(t)|Φj⟩.

d2

dt2 s(t) = − 1
ħ

∑i,jexp(−βϵi)

(∑kexp(−βϵk))
|⟨Φi|q|Φj⟩|

2 (ϵi−ϵj)
2

ħ2 exp { i
ħ (ϵi − ϵj)t}

ω2s(ω) = − 1
2πħ ∫ ∞

−∞ ⟨( d
dt
q̇(t))q(0)⟩

0
exp (iωt)dt.

ħ ∫ ∞
−∞ ω2s(ω)dω = 2 ∫ ∞

0 ω a(ω){ ħω
2 + ħω

exp(βħω)−1 }dω

d



(8.122)

The relations

(8.123)

and

(8.124)

can be interpreted as quantum	mechanical	generalizations	of	the	equipartition
theorem.

To convince ourselves we use (for ħω ≪ kBT )

(8.125)

from (8.104) as well as

(8.126)

according to (8.114). This gives

(8.127)

= 2 kBT ∫
∞

−∞
ω s(ω) dω,

when inserting (8.102). Additionally—in line with the calculations above for (8.124)—
we �ind

(8.128)

for canonically conjugate variables. Thus,

(8.129)

as claimed by the equipartition theorem. The proof of the corresponding statement
for ⟨q2⟩0 is more complex and is not given here explicitly.

limt→0 ⟨( d
dt
q̇(t))q(0)⟩

0
= −⟨q̇2⟩0.

⟨q2⟩0 = ħ ∫ ∞
−∞ s(ω) dω = 2 ∫ ∞

0
a(ω)
ω

{ ħω
2 + ħω

(exp(βħω)−1) } dω

⟨p2⟩0

m2 = ħ ∫ ∞
−∞ ω2s(ω) dω = 2 ∫ ∞

0 ω a(ω){ ħω
2 + ħω

exp(βħω)−1 } dω

a(ω) ≈ s(ω) ħω
kBT

= s(ω)βħω

{ ħω
2 + ħω

(exp(βħω)−1
} ≈ kBT = β−1

ħ ∫ ∞
−∞ ω2s(ω) dω ≈ 2 kBT ∫ ∞

0 ω a(ω)dω

= 2 kBT ∫ ∞
0 ω(s(ω) − s(−ω)) dω

∫ ∞
−∞

ω s(ω)dω = i
ħ

⟨[p,q]⟩0

2m
= 1

2m

⟨p2⟩0

2m = 1
2 kBT ,



1

8.7	 Examples
To illustrate the �luctuation-dissipation theorem let’s go back to the resistance noise.
From (8.94) (r(ω) = 1/(1 − iωCR)) immediately follows

(8.130)

such that in the classical approximation ħω ≪ kBT  according to (8.115) we get

(8.131)

When interpreting the left side of (8.131) we note that q f(t) must be an energy and
f(t) a time-dependent classical quantity. Since equation (8.94) implies an identi�ication
of f(t) and Uth.(t), q corresponds to the charge Q(t) = C U(t). On the left side of the
Nyquist	formula (8.131) then we have the Fourier transform of the �luctuation of the
charge. If we want to go over to the voltage, then r(ω) in (8.94) has to be multiplied by
1/C and in (8.130) and (8.131) the factor C in the numerator drops out on the right side.
The resulting Eq. (8.131) is integrated in analogy to (8.116) over ω, giving

(8.132)

for x = ωRC, since the integral over dx gives π/2. ⟨U(t)2⟩0 is therefore independent
of R; For smaller R values, the contribution of smaller frequencies decreases in (8.132),
however, higher frequencies contribute to the integral.

In summarizing this chapter we have examined the connection between
spontaneous	�luctuations of physical quantities around their average values in
statistical equilibrium and forced	deviations from the average values due to
disturbances of the balance by	external	perturbations. It was shown that these two
phenomena are closely linked for weak external perturbations and �ind their expression
in the �luctuation-dissipation	theorem. To this aim we have introduced the
thermodynamic perturbation theory and computed response functions for various
examples like the electric conductivity and the resistance noise.

Footnotes
This assumption is ful�illed in many practical cases.

 

1
π

I(r(ω)) = a(ω) = 1
π

ωRC
(1+ω2R2C 2)

,

ħ
2 [s(ω) + s(−ω)] = a(ω)

ω
kBT = 1

π
kBT RC

(1+ω2R2C 2)
.

⟨U(t)2⟩0 = 2
π
∫ ∞

0
kBT R

(1+ω2R2C 2)
dω

= 2 kBT
πC

∫ ∞
0

1
1+x2 dx = kBT

C
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9.	The	Ideal	Fermi	Gas
Wolfgang Cassing1  

University of Gießen, Gießen, Hessen, Germany

 

In this chapter we will investigate the ideal Fermi gas in particular at low
temperatures and calculate the equation of state and the �luctuations in the average
occupation number. As examples the speci�ic heat of metal electrons at low
temperatures as well as the glow emission of electrons from metals at �inite
temperature will be calculated.

9.1	 Fermi	Distribution
For the average occupation number of the single-particle level i we have found

(9.1)

where β = 1/(kBT ) and μ is the chemical potential. For the limiting case of high
temperatures (or low density) we have found in Sect. 6. 4, that ⟨ni⟩ decays
exponentially with energy,

(9.2)

for V /N (2πmkBT/h2)
3/2

≫ 1. In the other limiting case of low temperatures 
(T → 0, β → ∞) we have to distinguish ϵi > μ and ϵi < μ. For ϵi > μ and β → ∞
obviously we obtain ⟨ni⟩ → 0 exponentially, but ⟨ni⟩ → 1 for ϵi < μ and β → ∞.
For ϵi = μ the occupation number ⟨ni⟩ takes the value 1/2; this provides a clear
interpretation of μ: μT=0 indicates the energy up to which the single-particle levels
at absolute zero temperature are fully occupied; for energies above μ(T = 0) all
states are empty. μ(T = 0) =: ϵF  is called the Fermi	energy; it is determined by
the requirement

(9.3)

⟨ni⟩ = 1
exp(β[ϵi−μ])+1 ,

⟨ni⟩ ≈exp (−β[ϵi − μ])

∑i⟨ni⟩ = N ,

https://doi.org/10.1007/978-3-031-95518-1_9


where N  is the given average particle number of the system. The Fermi energy
therefore depends on the particle number of the system. The sharp Fermi
distribution at T = 0 softens for T > 0 (see Fig. 9.1).

Fig.	9.1 Fermi distribution as a function of the single-particle energy ϵ for T = 0 and T > 0

9.2	 Internal	Energy	and	Particle	Number	at	Low
Temperatures	T ≠ 0
When calculating

(9.4)

and

(9.5)

we replace (see Sect. 6. 4)

(9.6)

Since the quantities we are interested in (9.4) and (9.5) in the non-relativistic limit
only depend on

(9.7)

we convert (k2 = 2mϵ/ħ2, dϵ = ħ2k/m dk)

(9.8)

The integrals—we are interested in—then are of the form

N = ∑i⟨ni⟩

U = ∑i ϵi⟨ni⟩

∑i … → (2s+1)V

(2π)3 ∫ d3k… .

ϵ = ħ2k2

2m ,

∫ ∞
−∞ d3k⋯ = 4π ∫ ∞

0 k2dk⋯ = 2π( 2m
ħ2 )

3/2
∫ ϵ1/2dϵ…

( )



(9.9)

with the prefactor (s denotes the spin of the particles)

(9.10)

For the calculation of N  the function f(ϵ) = ϵ1/2, for U accordingly f(ϵ) = ϵ3/2. To
calculate the integrals (9.9) for low	temperatures we substitute

(9.11)

such that (constant C from (9.9) omitted)

(9.12)

= kBT(∫
μ/(kBT )

0

f(μ − kBTz)

exp (−z) + 1
dz + ∫

∞

0

f(μ + kBTz)

exp (z) + 1
dz).

With the identity

(9.13)

we can convert (9.12) into a T = 0 contribution and split a correction for T ≠ 0:

(9.14)

where in the 2nd term for μ/(kBT ) ≫ 1 the upper integration limit can be moved
to ∞. In the second term we expand the numerator in the integrand in powers of 
kBTz,

(9.15)

leading to

(9.16)

+
C

3
(kBT )4

f ′′′(μ)∫
∞

0

z3

exp (z) + 1
dz + ⋯ ;

I = C ∫ ∞
0

f(ϵ)
exp{(ϵ−μ)/kBT}+1

dϵ

C = V (2s+1)

(2π)3 2π( 2m
ħ2 )

3/2
= V (2s + 1)2π( 2m

h2 )
3/2

.

ϵ − μ = kBT z,

kBT ∫
∞

−μ/kBT
f(μ+kBTz)
exp(z)+1

dz = kBT(∫
0

−μ/kBT
f(μ+kBTz)
exp(z)+1

dz + ∫ ∞
0

f(μ+kBTz)
exp(z)+1

dz)

1
exp(−z)+1

= exp(z)+1−1
exp(z)+1

= 1 − 1
exp(z)+1

∫ μ

0 f(ϵ̄) dϵ̄ + kBT ∫
∞

0
[f(μ+kBTz)−f(μ−kBTz)]

exp(z)+1
dz,

f(μ ± kBTz) = f(μ) ± kBTzf
′(μ) + z2

2 (kBT )2
f ′′(μ) ± z3

6 (kBT )3
f ′′′(μ) …

I = C(∫ μ

0 f(ϵ̄) dϵ̄ + 2(kBT )2
f ′(μ) ∫ ∞

0
z

exp(z)+1
dz)



all even derivatives of f(μ) cancel out. Inserting the values of the integrals from
tables we get the �inal result

(9.17)

With (9.17) and (9.6) formula (9.4) (with f(ϵ) = √ϵ, f ′ = 1/(2√ϵ)) becomes

(9.18)

or solved for μ3/2,

Using for T = 0

(9.19)

then μ(T ) emerges as—for low temperatures T ≠ 0—after an expansion of the
denominator

(9.20)

Similarly, for f(ϵ) = ϵ3/2 we get

(9.21)

I = C(∫ μ

0 f(ϵ̄) dϵ̄ + π2

6 (kBT )2
f ′(μ) …).

N = 2
3 C μ3/2 + C π2

6 (kBT )2 1
2√μ

+ ⋯

= 2
3
C μ3/2(1 + π2

8
( kBT

μ
)

2
+ ⋯),

μ3/2 = 3N
2C (1 + π2

8 (
kBT
μ
)

2
+ ⋯)

−1

,

→ μ = ( 3N
2C )

2/3(1 + π2

8 (
kBT
μ
)

2
+ ⋯)

−2/3

.

μ(T = 0) = ϵF = ( 3N
2C )

2/3
,

μ(T ) = ϵF(1 + π2

8 (
kBT
ϵF

)
2

…)
−2/3

≈ ϵF(1 − π2

12 (
kBT
ϵF

)
2

…).

U ≈ 3
5
N ϵF |T=0(1 + 5π2

12
( kBT

ϵF
)

2
…).



It is important to note in context with Eq. (9.21), that the corrections to T = 0
start with T 2, and not with T. The correct behavior of CV  for low temperatures
follows from (9.21) directly,

(9.22)

such that CV → 0 for T → 0 in agreement with the 3rd law of thermodynamics.
A practical example is provided by the speci�ic	heat	of	metals. For CV /T  it is

found at low temperatures

(9.23)

The quadratic term stems from lattice vibrations (cf. Chap. 10), while the a1

contribution stems from the (almost free motion) of the conduction electrons. The
experimental value of a1 for many metals is in agreement with (9.22). The speci�ic
heat of metals at low temperatures clearly shows the failure of the classical theory
(according to which the speci�ic heat per degree of freedom is 1/2 kB, thus 3/2 kB
for free electrons) and gives a clear con�irmation of quantum statistics.

The qualitative reason for the low contribution of free electrons to the speci�ic
heat at low temperatures is clear: the single-particle states far below the Fermi
energy ϵF  are fully occupied (⟨n(ϵ)⟩ = 1) and add to the internal energy (9.5) a
temperature-independent contribution. For the speci�ic heat CV  only the electrons
from states in the vicinity of the Fermi energy contribute, i.e. less and less with
decreasing temperature of the electrons, since the Fermi energy distribution
becomes increasingly sharper.

9.3	 Degeneracy	of	the	Fermi	Gas
The term low	temperatures still needs to be speci�ied. This is achieved using
formulas such as (9.18), (9.20) or (9.21), where kBT/ϵF  appears as an expansion
parameter. De�ining the Fermi temperature TF  by

(9.24)

(for metals TF ∼ 105K, that is large compared to room temperature ≈ 300K),
which according to (9.19) is density-dependent, then high density and low
temperature implies

(9.25)

In this range a Fermi gas is called degenerate.

( ∂U
∂T )V = CV = const. ⋅T + ⋯ ,

CV

T
= a1 + a2T

2+. . .

kBTF =: ϵF

T ≪ TF .



9.4	 Equation	of	State
For the grand-canonical ensemble we have (see table (7. 65))

(9.26)

for the thermodynamic potential. Using the relation (8. 18) (U = TS − PV + μN),
which is valid for homogeneous systems, we obtain

(9.27)

employing (5. 38). With (6. 11)

(9.28)

we obtain the equation of state of the ideal Fermi gas. This expression contains
deviations from the classical equation (7. 127), which can be traced back to the Pauli
principle. The calculation of ∑i ln {. . } in (9.28) can be converted to an energy
integration in analogy to Sect. 9.2:

(9.29)

= kBT C ∫
∞

0

2

3
ϵ3/2 β exp (−β(ϵ − μ))

1+ exp (−β(ϵ − μ))
dϵ =

2

3
C ∫

∞

0

ϵ3/2

1+ exp (β(ϵ − μ))
dϵ

after partial integration. We thus get PV to be exactly 2/3 of the integral for the
internal energy U. With (9.21) the result is

(9.30)

Equation (9.30) shows that for T = 0 still PV ≠ 0 in contrast to the classical
ideal gas. The zero	point	pressure—remaining at T = 0—is a direct consequence
of the Pauli principle, according to which only two particles with spin 1/2 can have
the momentum ħk = 0; all other particles must have a higher momentum and
generate the zero-point pressure.

J = J(T ,V ,μ) = U − TS − μN

PV = −J = kBT ln Zg,

PV = kBT ln (∏
i
{1+ exp (−β(ϵi − μ))})

= kBT∑i
ln {1+ exp (−β(ϵi − μ))}

PV = kBT C ∫ ∞
0 √ϵ ln (1+ exp (−β(ϵ − μ))) dϵ

PV = 2
3 U = 2

5 N ϵF(1 + 5π2

12 (
kBT
ϵF

)
2

…) .



9.5	 Fluctuations	in	the	Average	Occupation	Number
According to Sect. 8. 2, Eq. (8. 11), we get

(9.31)

and we obtain

(9.32)

The �luctuations disappear for energies far below the Fermi energy, where 
⟨ni⟩ ≈ 1 and far above, where ⟨ni⟩ ≈ 0. With decreasing temperature the
�luctuations become increasingly stronger and concentrate near the Fermi energy.

9.6	 Glow	Emission
We want to calculate the electron current emerging from a (�lat) metal surface at
�inite temperature T. For this we assume that the emerging electrons have to pass a
potential difference χ to leave the metal (see Fig. 9.2).

Fig.	9.2 Potential at the interface between metal and vacuum

The balance between electrons in the metal and electrons in the vacuum are
characterized by the fact, that the chemical potentials (index m :  metal, index v : 
vacuum) are the same,

(9.33)

For room temperatures (T ≈ 3000K) we can neglect the temperature dependence
of μ such that

(Δni)
2 = kBT ( ∂⟨ni⟩

∂μ
) = β−1 ( ∂(exp(β(ϵi−μ))+1)−1

∂μ
)

= exp(β(ϵi−μ))+1−1

(exp(β(ϵi−μ))+1)2

(Δni)
2 = ⟨ni⟩(1 − ⟨ni⟩).

μm = μv.



(9.34)

For the particle densities in the vacuum we then obtain (2s + 1 = 2)

(9.35)

and in the metal

(9.36)

In order to hold all conduction electrons in the metal, χ must be well above ϵF , such
that for room temperatures (i.e. βϵF ≫ 1) we can assume

(9.37)

Then in nv (9.35) we can neglect the 1 in the denominator of the integrand;

(9.38)

The remaining integral of the form (with the substitution x2 = ϵ, dϵ = 2xdx)

(9.39)

is solvable in closed form and we obtain (with C
V

= 4π( 2m
h2 )

3/2) for nv :

(9.40)

Now we can calculate the current density jm of the glow	electrons emitted by
the metal, since in equilibrium the number of electrons emerging from the metal is
equal to the number of steam	electrons hitting the surface of the metal and return
to the metal phase; thus:

(9.41)

Since the density of electrons in the vapor phase is small, we can calculate ⟨|vx|⟩
classically, i.e.

μm = μv = ϵF .

N
V

= nv = C
V
∫ ∞

0
ϵ1/2

exp{β(ϵ+χ−ϵF )}+1
dϵ

nm = C
V
∫ ∞

0
ϵ1/2

exp{β(ϵ−ϵF )}+1
dϵ.

β(χ − ϵF ) ≫ 1.

nv = C
V
∫ ∞

0
ϵ1/2

exp{β(ϵ+χ−ϵF )}
dϵ = C

V
exp (−β(χ − ϵF )) ∫ ∞

0
ϵ1/2

exp{βϵ}
dϵ .

∫ ∞
0

ϵ1/2

exp(βϵ)
dϵ = 2 ∫ ∞

0
x2

exp(βx2)
dx = ∫ ∞

−∞ x2 exp (−βx2) dx = √π

2β3/2

nv = 2π( 2m
h2 )

3/2
exp (− (χ−ϵF )

kBT
) ⋅ (kBT )3/2√π

= 2π
h3 (2mkBT )3/2 exp (− (χ−ϵF )

kBT
) √π .

jm = e nv
1
2 ⟨|vx|⟩ .



(9.42)

if ⟨ϵ⟩ is calculated in analogy to (9.39). The �inal result is the Richardson	formula,

(9.43)

In summarizing this chapter we have investigated the ideal Fermi gas in
particular at low temperatures and calculated the internal energy and the equation
of state as well as the �luctuations in the average occupation number. As examples
the speci�ic heat of metal electrons at low temperatures as well as the glow emission
of electrons from metals at �inite temperature has been calculated.

⟨|vx|⟩ = √⟨v2
x⟩ = √⟨v2⟩/3 = √ 2⟨ϵ⟩

3m = √ 2kBT
πm

,

jm = e 4πm
h3 (kBT )2 exp (− [χ−ϵF ]

kBT
).
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In this chapter we will investigate the ideal Bose gas in particular at low
temperatures and compute the properties of the Bose condensate. We will
compute the internal energy and speci�ic heat and show that the results
are consistent with the 3rd law of thermodynamics. As examples we will
study the properties of a photon gas in a large cavity and the phonons in
solids.

10.1	 Bose	Distribution
The average occupation number of a single-particle level for bosons
according to (6. 13) is

(10.1)

Since always ⟨ni⟩ ≥ 0, it follows

(10.2)

If we normalize the scale of the single-particle energies such that the
lowest state has ϵo = 0, then must hold

(10.3)

We have discussed the shape of ⟨ni⟩ for high temperatures (or low
density) already in Sect. 6. 4: we get an exponentially decreasing
Boltzmann distribution exp (−β[ϵi − μ]). In general, ⟨n(ϵ)⟩ has the shape

⟨ni⟩ = 1
exp(β[ϵi−μ])−1 .

exp (β[ϵi − μ]) ≥ 1.

μ ≤ 0.

https://doi.org/10.1007/978-3-031-95518-1_10


shown in Fig. 10.1. With decreasing temperature the occupation number
of energetically higher states decreases in favor of the energetically lower
ones. For T → 0 all Bose particles go to the lowest state ϵ0 = 0. The
chemical potential μ must change in such a way that the given number of
particles N is preserved. For T → 0 the chemical potential μ always
moves more towards its limit μ = 0. Due to the singularity of ⟨n(ϵ)⟩ for 
μ = ϵ0, T ≠ 0, which we �ind from (10.1) or Fig. 10.1, the discussion of
low temperatures T → 0 has to be treated with caution. We’ll shift this
analysis to Sect. 10.3, where we focus on the phenomenon of the Bose-
Einstein	condensation.

Fig.	10.1 Bose distribution n(ϵ) for two temperatures

10.2	 Fluctuations	in	the	Average	Occupation
Number
As in (9. 31) we form

(10.4)

with (10.1) we get directly

(10.5)

The difference to the Fermi gas (9. 32) and to the classical limiting
case, which results from (9. 2) to be given by

(Δni)
2 = β−1( ∂⟨ni⟩

∂μ ) =
exp(β(ϵi−μ))−1+1

(exp(β(ϵi−μ))−1)2 ;

(Δni)
2 = ⟨ni⟩(1 + ⟨ni⟩).



(10.6)

is particularly clear, if we consider the relative �luctuation

(10.7)

The remarkable point in (10.7) is that for large values of ⟨ni⟩ the
relative �luctuation does not vanish but remains of order 1!

10.3	 Bose-Einstein	Condensation
We now come to the behavior of Bose systems at low temperatures. To
determine the temperature dependence of the chemical potential μ we go
back to

(10.8)

which determines μ for given N  and T. To evaluate (10.8) we use the
same procedure as for Fermi statistics and classical statistics; we replace
(spin s = 0)

(10.9)

As long as only scalar quantities are of interest, the momentum
integration can be replaced by an energy integration. We get e.g.

(10.10)

with the constant C = 2π(2m/ħ2)
3/2

V /(2π)3 from (9. 10). If we decrease
the temperature at constant density N /V , the (negative) quantity μ
must increase, such that the value of the integral in (10.10) remains
constant. The limit μ = 0 then de�ines a critical temperature Tc by

(10.11)

(Δni)
2 = ⟨ni⟩

(Δni)
2

⟨ni⟩
2 = 1 + 1

⟨ni⟩
.

N = ∑i⟨ni⟩ = ∑i
1

exp(β[ϵi−μ])−1 ,

∑k. . . → V

(2π)3 ∫ d3k… .

N = C ∫ ∞

0
ϵ1/2

exp{β[ϵ−μ]}−1 dϵ

N = C ∫ ∞

0
ϵ1/2

exp{ϵ/(kBTc)}−1
dϵ.



To determine Tc we introduce the dimensionless variable 
z = ϵ/(kBTc),

(10.12)

The integral in (10.12) has a �inite value ≠ 0, such that

(10.13)

At �irst glance one is attempted to interpret the result above that one
cannot cool down a Bose gas at constant density N /V  to temperatures 
T < Tc. This consideration, however, is not valid since the formula
(10.10)—obtained by (10.9)—is only valid for T > Tc: The divergent
term with ϵ0 = μ = 0 in the original formula (10.8) is suppressed in
(10.10) by the factor ϵ1/2. For high temperatures all energies ϵ are weakly
occupied, such that the suppression of the contribution of ϵ0 = 0 in the
calculation of the total particle number N  is permitted by (10.10). In
contrast, at low temperatures almost all particles remain in the state with 
ϵ0 = 0, such that this state—in the transition (10.9)—must be treated
separately. Thus:

(10.14)

for T < Tc. Since at low temperatures T < Tc there are a lot of
particles in the state ϵ0 = 0, -βμ ≈ 0 must be ful�illed. Then one can
approximate NG by

(10.15)

with z := βϵ. Using (10.12) or (10.13) we get
(10.16)

N

V
= (kBTc)

3/2 C
V
∫ ∞

0
z1/2

exp(z)−1
dz ∼ T

3/2
c .

Tc = const. ⋅( N

V
)

2/3
.

N = 1
exp(−βμ)−1

+ C ∫ ∞
0

ϵ1/2

exp(β[ϵ−μ])−1
dϵ = N0 + NG

NG ≈ C ∫ ∞

0
ϵ1/2

exp(βϵ)−1
dϵ = C(kBT )3/2 ∫ ∞

0
z1/2

exp(z)−1
dz = C ′V T 3/2

/



Accordingly we obtain (N0 = N − NG)

(10.17)

In total, the following picture emerges (see Fig. 10.2).

Fig.	10.2 The relative number of particles in the Bose-Einstein condensate as a function of
temperature in units of Tc (10.17)

Above Tc the number of particles in the state ϵ0 = 0 is negligible
relative to N ; below Tc the particle number in the condensate N0

increases rapidly and for T = 0 the occupation number N0 = N . This
process of gathering many (eventually all) particles in the state ϵ0 = 0 is
called Bose-Einstein	condensation; Tc is called the condensation-
temperature. NG gives the number of particles in the gas	phase, N0 that
of the condensate. When using the term condensation one must point
out, that for the Bose-Einstein condensation the particles are separated in
momentum	space, whereas in ordinary condensation (gas-liquid) a
separation of the phases occurs in	space.

A concrete example for Bose-Einstein condensation offers the 4He
system, which at Tc = 2. 18 ∘K shows a clear phase transition (see Sect.
10.4). If we calculate Tc from (10.13), we get 3. 14 ∘K. The agreement is

NG

N
= ( T

Tc
)

3/2

.

~
N0

~
N

= N0

N
= 1 − ( T

Tc
)

3/2

.



surprisingly good if one considers that the theory above neglects all
intermolecular forces!

Note: The splitting made in (10.14) for N  offers the question
whether – apart from the state with ϵ0 = 0—also some higher states with
energy ϵ1, ϵ2, … ≠ 0 have to be treated separately in the same way. This
is not the case for V → ∞, as the following consideration shows. As a
typical example, we consider the term

(10.18)

with

(10.19)

(generally: ϵi = π2ħ2/(2mV 2/3)(n2
x + n2

y + n2
z); V = L3; nx, ny, nz = 0,

1, 2, ..).
and

(10.20)

as a degeneracy factor of the ϵ1 state. Since e−βμ ≥ 1, it follows for 
V → ∞ (i.e. ϵ1 → 0)

(10.21)

= 3(2s + 1)
2mV −1/3

(π2ħ2β)
→ 0

for β → ∞ (T → 0). For macroscopic volumes V it is thus enough to just
consider the ϵ0 = 0 term separately.

10.4	 Internal	Energy	and	Speci�ic	Heat
When calculating the internal energy U, a distinction must be made
between T > Tc and T < Tc:

(10.22)

⟨n1⟩

V
= 1

V

g(ϵ)

exp(β[ϵ−μ])−1

ϵ1 =
ħ2k2

1

2m
= π2ħ2

2mL2 = π2ħ2

2m
V −2/3

g(ϵ1) = (2s + 1) ⋅ 3

⟨n1⟩
V

≤ 1
V

g(ϵ1)

[exp(βϵ1)−1]
≈ 1

V

g(ϵ1)
βϵ1



and

U = C ∫
∞

0

ϵ3/2

exp (βϵ) − 1
dϵ for T < Tc.

For T < Tc we can (as in Sect. 10.3) set −βμ ≈ 0, while for T > Tc it
should be noted that μ = μ(T ) ≠ 0. For temperatures T far above Tc we
can use the classical approximation with the result already known from
Sect. 4. 4:

(10.23)

For T < Tc we can do the integration; with the substitution z = ϵ/kBT
we see immediately that U ∼ T 5/2. The more precise result is

(10.24)

from which follows

(10.25)

U and CV  arise only from the particles with k ≠ 0. For CV  we get the
following picture (see Fig. 10.3).

U = C ∫ ∞
0

ϵ3/2

exp(β[ϵ−μ])−1
dϵ for T > Tc

U = 3
2 N kBT .

U ≈ 0.77 N kB
T 5/2

T
3/2
c

,

CV = ∂U
∂T ≈ 1.93 N kB( T

Tc
)

3/2

.



Fig.	10.3 Speci�ic heat CV (T ) for an ideal boson gas as a function of temperature

Such a peak also shows the speci�ic heat of 4He at 2. 18 ∘K, but in the
form of a singularity. It is obvious that the ideal Bose gas is a too simple
model to describe 4He at low temperatures. Nevertheless, there is no
doubt that during the phase transition in 4He at 2. 18 ∘K the Bose
statistics play an important role.

10.5	 Photons
At temperatures T ≠ 0 every body emits and absorbs electromagnetic
radiation. In an evacuated cavity—whose walls are kept at a �ixed
temperature T—there will be a balance between the radiation in the
cavity and the walls. For large cavities the special geometry shouldn’t
matter. For the sake of simplicity we choose a cube V = L3.

We can describe the electromagnetic radiation in such a cavity by a
photon gas. The main points for the following considerations are brie�ly
summarized again:

1. Photons are characterized by their momentum ħkμ, their energy 
ħωμ and the polarization state j. The connection between energy and
momentum follows from the theory of relativity for particles with rest
mass 0,

(10.26)

or

(10.27)

E = p ⋅ c

ωμ = |kμ| ⋅ c.



The possible values kμ are

(10.28)

2. Photons have spin 1 ħ (since they are described by a vector �ield), and
thus are bosons, which is re�lected in the commutation rules for
annihilation and production operators bμj, b

†
μ′j′ ,

(10.29)

all remaining commutators vanish. In (10.29) the indices j, j′ = 1, 2
stand for the two polarization degrees of freedom of the photons
(perpendicular to the direction of motion k).

3. The eigenstates of the radiation �ield are characterized by indicating
the number of photons present of each species (μ, j) (see quantum
mechanics),

(10.30)

A direct photon-photon interaction (in lowest order) does not exist;
photons are independent particles. The total energy E of the radiation
�ield is composed additively from the contributions of the individual
photons,

(10.31)

if we consider E relative to the energy of the photon vacuum.
We can now describe the radiation in the cavity as a statistical

ensemble of independent bosons (photons), from which we know the
temperature T and the volume V. In contrast to an ordinary gas, we know
the photon number neither sharp nor on average. This means that the
statistical operator has the form

(10.32)

kμ = 2π
L

(μ1,μ2,μ3);μi = ±1, ±2, ±3 … .

[bμj,b
†
μ′j′ ] = δμμ′δjj′ ;

|…nμj …⟩.

E = ∑μ,j ħωμ nμj,

ρ =exp (−βHr),



where Hr is the Hamiltonian of the radiation �ield; by trace formation we
have to sum over all basis states of the Fock-space with �ixed volume. This
results in e.g. for the average occupation number of the mode (μ, j) :

(10.33)

To calculate the average energy we substitute—since there are two
transversal polarization states (j = 1.2),

(10.34)

In contrast to the considerations in Sect. 10.3 the value ω = 0 (or k = 0)
does not need any special treatment, since it makes no sense to talk about
photons with ħω = 0 and ħk = 0. For the energy follows:

(10.35)

with the energy density per frequency unit

(10.36)

Equation (10.36) is Planck’s	radiation	law. For ħω ≪ kBT  (βħω ≪ 1
) Eq. (10.36) leads to

(10.37)

this is the classical law derived by Rayleigh from the equipartition
theorem. In (10.35) it leads to the divergence known as ultraviolet
catastrophe. In the other extreme case ħω ≫ kBT  we get Wien’s
law (found empirically),

(10.38)

⟨nμj⟩ = 1
exp(βħωμ)−1

.

∑μ,j ħωj … → 2V

(2π)3
4π
c3 ∫ ∞

0 ω2dω ħω… .

U = V ∫ ∞
0 u(ω,T ) dω

u(ω,T ) = ħ
π2c3

ω3

exp(βħω)−1
.

u(ω,T ) ≈ ħ
π2c3

ω3

βħω = kBT
ω2

π2c3 ;

3



The shape of u(ω,T ) according to (10.36) is displayed in Fig. 10.4 for
two different temperatures and re�lects Wien’s	displacement	law. The
maximum in the energy density follows from

(10.39)

i.e. 3kBT = ħωmax.

Fig.	10.4 Wien’s displacement law for two temperatures

The total energy density reads (with x = βħω)

(10.40)

with d = 2 for two polarization degrees of freedom (in natural units).
Equation (10.40) is denoted by the Stefan-Boltzmann	law.

For the speci�ic heat per unit volume we get

(10.41)

The difference to (10.25) can be explained by the fact, that different
energy-momentum relations exist: ϵ = pc for photons, but ϵ = p2/(2m)
for non-relativistic particles of mass m.

u(ω,T ) =
ħω3

π2c3 exp (−βħω).

∂u(ω,T )
∂ω =

ħω2(3−ħωβ)exp(−βħω)

π2c3 = 0 ,

U
V

=
ħ

π2c3 ∫
∞

0
ω3

exp(βħω)−1 dω

=
(kBT )4

π2c3ħ3 ∫ ∞

0
x3

exp(x)−1
dx =

π2k4
B

15c3ħ3 T 4 ≡ d
30
π2T 4

CV ∼ T 3.



10.6	 Detailed	Balance
We want to examine more closely the processes, that lead to the
equilibrium between the cavity radiation and its environment. It is
suf�icient to consider only the emission and absorption of photons of a
certain frequency ω. It corresponds to the difference between two
energies of the atoms of the walls delimiting the cavity:

(10.42)

The number of absorption processes ν12 per unit of time is

(10.43)

where N1 the number of atoms in state 1, u(ω,T ) is the energy
density of the photons of frequency ω, and B12 the probability for the
elementary process of absorption.

For the number of emission processes ν21 one has to take into account
that in addition to the induced emission (inverse of the absorption
described by B12) also spontaneous emission (due to quantization, see
quantum mechanics) has to be considered. Thus:

(10.44)

where B21 and N2 are given according to (10.43) and A21 is the
probability of the elementary process of spontaneous	emission. As long
as the Hamilton operator is time reversal invariant, we have according to
micro-reversibility

(10.45)

These equations are generally referred to as detailed	balance. This
statement also follows directly from the following considerations.

In thermal equilibrium we must have
(10.46)

ħω = E2 − E1.

dν12

dt
= B12N1u(ω,T ),

dν21

dt
= B21N2u(ω,T ) + A21N2,

B12 = B21.

d d



or

(10.47)

or

N1

N2
u(ω,T ) − u(ω,T ) =

A21

B12
.

Furthermore,

(10.48)

since the atoms at temperature T are described by the statistical operator 
exp (−β H0), where H0 is the Hamiltonian of atoms. This leads to

(10.49)

Using Wien’s law (10.38), which is valid for high frequencies, we
obtain for A21/B21 (by comparing the prefactors),

(10.50)

and (10.49) turns into Planck’s law (10.36).
At �irst glance it seems like having derived Planck’s radiation law

without the concept of photons, i.e. within the framework of the classical
radiation theory. The apparent contradiction is resolved, if we recall that
the spontaneous	emission used above is a direct consequence of the
quantization of the radiation �ield (see quantum mechanics).

Equation (10.49) shows that Planck’s law holds regardless of the
material considered. The separate transition probabilities A21 and 

dν12

dt
= dν21

dt

B12N1u(ω,T ) = B12N2u(ω,T ) + A21N2

N1

N2
=

exp(−βE1)

exp(−βE2)
=exp (−β(E1 − E2)) =exp (βħω),

u(ω,T ) = A21

B21

1
exp(βħω)−1 .

A21

B21
= ħω3

π2c3 ,



B21 = B12 depend on the type of the atom; however, the ratio A21/B21 is
independent of the atom type.

10.7	 Phonons	in	Solids
The lattice building blocks of a solid body can oscillate around their
equilibrium positions. For moderate temperatures these oscillations are
small, such that anharmonic effects can be neglected. The Hamilton
function of the crystal then has a quadratic form,

(10.51)

Here pν , qν  are the momenta and de�lections of the particles, mν  their
masses, and Kμν  the force constants while N is the number of grid
building blocks. By a linear transformation of the pν , qν  it is always
possible to decouple the oscillations. We then get 3N normal	oscillations
with frequencies ωi (more precisely: 3N-6 after subtracting the degrees of
freedom of translation and rotation; however, this correction is negligible
for macroscopic systems). Each lattice building block therefore has three
degrees of freedom of oscillation.

The quantization of such a system of decoupled harmonic oscillators
proceeds as in the case of a single harmonic oscillator. The possible
energies of the crystal during vibrational excitations (per direction) then
is given by (see quantum mechanics)

(10.52)

The vibration quanta are called phonons; they are characterized by
their energy ħωi, the propagation vector ki, which is linked to ωi by a
dispersion	relation ω(k), and their polarization, corresponding to
longitudinal and transverse oscillations. In the harmonic approximation
the phonons are independent particles, which obey the Bose statistics.

We now consider a crystal with volume V at temperature T. As in case
of a photon gas we do not know the total number of phonons (not to be

Hcl. = ∑N
ν=1

p2
ν

2mν
+ 1

2 ∑N
μ,ν=1 Kμν qμqν.

E = E0 + ∑3N
i=1 ħωi(ni + 1

2 ).



confused with the number of grid building blocks N; it determines the
number of possible frequencies ωi!). So we know the average occupation
number for a vibration i with excitation energy ħωi,

(10.53)

at a given temperature kBT = 1/β and given volume V, which determines
the phonon frequencies ωi.

We now want to calculate the speci�ic	heat of the crystal. To this aim
we need the internal energy

(10.54)

The calculation of the frequencies ωi = ωi(ki) is a complicated
problem (to be solved numerically), which depends on the atomic
structure of the crystal. The results of such a calculation cannot be
speci�ied in the form of simple functions ω = ω(k). We therefore consider
a model that is simple enough, but allows to calculate expressions like
(10.54) and on the other hand remains suf�iciently realistic. This Debye
model is based on two approximations:

(1.) Since for macroscopic systems the frequencies ωi lie close
together, the sums are replaced by an integration

(10.55)

The integration must be limited such that the number of the degrees of
freedom (3N) is kept constant!

(2.) For the connection between ω and k one assumes a simple
dispersion relation,

(10.56)

with c0 as the speed of propagation of the vibrations in the crystal.
This approximation corresponds to (10.27) for photons and is suitable for

⟨ni⟩ = 1
exp(βħωi)−1

U = ∑i ħωi⟨ni⟩ = ∑i
ħωi

exp(βħωi)−1
.

∑i ⋯ = (2s + 1)∑k ⋯ = (2s + 1) V

(2π)3 ∫ d3k⋯ .

ω = c0k,



long wavelengths acoustic oscillations in an isotropic medium; c0 then is
the usual speed	of	sound.

The relation (10.56)—valid for small k values—is used in the Debeye
model for all frequencies up to the maximum frequency ωm, which is
determined by the �ixed number of degrees of freedom (with 
(2s + 1) = 3):

(10.57)

thus

(10.58)

or

(10.59)

This gives for U,

(10.60)

or for the internal energy per lattice building block (with t = βħω)

(10.61)

De�ining the Debeye	function by

(10.62)

3 N = ∑i 1 = 3V

(2π)
3 4π ∫ km

0 k2dk = V
(2π2)

k3
m,

km = ( 3 N 2π2

V
)

1/3

= (6π2)
1/3 ( N

V
)

1/3

ωm = c0(6π2 N
V

)
1/3

.

U = 3V
(2π2c3

0)
∫ ωm

0 ω2 ħω
exp(βħω)−1

dω

U
N

=
9(kBT )4

(ħωm)3 ∫ βħωm

0
t3

exp(t)−1
dt.

D(x) = 1
x3 ∫

x

0
t3

exp(t)−1
dt,



we get

(10.63)

with the Debeye	temperature TD de�ined by

(10.64)

For the limiting cases T → 0, T → ∞ the explicit values of D(TD/T )
are

(10.65)

(10.66)

Then the speci�ic heat per grid building block is

(10.67)

(10.68)

In practice TD ∼ 102 K. At low temperatures CV  vanishes with T 3 in
agreement with the 3rd law of thermodynamics and the experimental
�indings.

U
N

= 9 kBT D( TD

T
)

kBTD =: ħωm.

U
N

= 3 kBT for T ≫ TD,

U
N

= 3
5 π4kBT( T

TD
)

3

for T ≪ TD.

CV = 3 kB for T ≫ TD

CV = 12
5 π4kB( T

TD
)

3

for T ≪ TD.



Fig.	10.5 Speci�ic heat CV (T ) as a function of temperature T for mono-atomic crystals

At high temperatures the classic result (rule	of	Dulong-Petit) is
con�irmed with CV = 3kB (see Fig. 10.5).

The Debye model has been proven useful in the description of mono-
atomic crystals when avoiding very high temperatures (close to the
melting point), where the harmonic approximation fails.—Weak
anharmonicities can be taken into account using the thermodynamic
perturbation theory (Sect. 8. 3).—In polyatomic lattices the simple model
fails because there are in addition optical (dipole) oscillations.

Example: Oscillations of the Na+ ions against the Cl− ions in a NaCl
crystal.

In summary of this chapter we have discussed the properties of ideal
Bose systems in particular at low temperatures, where a Bose
condensation occurs. Furthermore, we have calculated the speci�ic heat
and internal energy and con�irmed the 3rd law of thermodynamics. As
important example we have calculated the photon radiation in a large
cavity and derived Planck’s radiation law. As another example we have
discussed phonons in solids as quantized harmonic vibrations of the
building blocks.
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So far we have considered highly dilute (ideal) gases in which the interaction between
the particles could be neglected. In the following we will consider moderately diluted
and interacting gases; for the sake of simplicity we consider gas particles without
spin, i.e. (2s + 1) = 1. As important example we will investigate the properties of a
classical Van der Waals gas as well as ‘nuclear matter’ in thermal equilibrium as an
example for an interacting Fermi system.

11.1	 Virial	Expansion
In order to deal with the effects of particle interactions we perform the following
expansion of the grand-canonical partition function Zg (with PV = −J = kBT ln Zg

),

(11.1)

where Z(1) = V /λ3 (6. 28) is the partition function of a particle for a non-
interacting ideal gas ( λ = h/√2πmkBT ). The second contribution takes into
account the interaction between two particles or exchange symmetries of the
particles (via Z(2)). By differentiating with respect to μ we get the average number of
particles

(11.2)

For the iterative solution of (11.2) we set (in agreement with (6.20))

(11.3)

ln Zg = PV
kBT

= Z(1) exp ( μ

kBT
) + (Z(2) − 1

2 Z(1)2) exp ( 2μ
kBT

),

N = 1
β

∂
∂μ

ln Zg = Z(1) exp ( μ

kBT
) + 2(Z(2) − 1

2
Z(1)2) exp ( 2μ

kBT
).

exp (−α) =exp ( μ

kBT
) = N

Z(1)

https://doi.org/10.1007/978-3-031-95518-1_11


in the correction part and get (after rearrangement)

(11.4)

or, inserted into (11.1)

(11.5)

Equation (11.5) then is the extended form of the equation of state (7. 125) (
PV = NkBT ). For the pressure we obtain the �irst terms in an expansion according
to powers of the density

(11.6)

i.e.

(11.7)

with

(11.8)

The expansion (11.7) is called virial	expansion and b(T) (11.8) the �irst	virial
coef�icient.

To calculate b(T) we only need Z(2), since Z(1) = V /λ3 (6. 28) is already known.
Since an explicit calculation of Z(2) within the framework of many-body theory is too
complex here, �irst of all we will discuss the result in lowest (non-vanishing) order for
Fermi/Bose particles at ‘low’ temperatures:

(11.9)

=
1

2
Z(1)2 ∓ B(T ),

Z(1) exp ( μ

kBT
) = N − 2(Z(2) − 1

2 Z(1)2)( N

Z(1) )
2

ln Zg = PV
kBT

= N − (Z(2) − 1
2 Z(1)2)( N

Z(1) )
2
.

n = N

V
,

P = nkBT (1 + b(T )n + ⋯)

b(T ) = − V

Z(1)2 (Z(2) − 1
2 Z(1)2) = −

VZ(2)

Z(1)2 + V
2 .

Z(2) ≈ 1
2 ∑q,p exp (− p2+q2

2mkBT
) ∓ 1

2 ∑p exp (− p2

mkBT
)

= 1
2 Z(1)2 ∓ 1

2 ∑p exp (− 2p2

2mkBT
)



where ∑p corresponds to the sum over all discrete momentum states in the
volume V. The �irst term is proportional to the square of the partition function for free
particles of mass m (= 1/2Z(1)2), while the second term gives a correction for Fermi
(upper-sign) and Bose statistics (lower + sign) of two particles, since for Fermi
particles p = q does not occur in Z(2) (with the same other quantum numbers);
however, for Bose particles p = q must occur, but without the factor 1/2, which
clearly explains the second term in (11.9). The corrections in Z(2) therefore only
contain effects of the Fermi/Bose statistics at ‘low’ temperatures!

With (11.8) we get for the �irst Virial coef�icients (Z(1) = V /λ3)

b(T ) = −
V

Z(1)2
(
Z(1)2

2
∓ B(T ) −

Z(1)2

2
) = ±

VB(T )

Z(1)2

(11.10)

According to (11.7) the pressure P increases with increasing density n for
fermions, while for bosons it decreases with n. In analogy to Sect. 6. 4 we replace (
(2s + 1) = 1)

(11.11)

Inserting the result from (6. 31) for λ, i.e. λ = h/√2πmkBT , this gives

(11.12)

Since λ2 decreases as ∼ 1/T , b(T) decreases for high temperatures ∼ T −3/2 as
expected. As already emphasized, however, with the approach (11.9) only Fermi/Bose
corrections of the ideal classical gas are described at ‘low’ temperatures (and weak
interactions). An explicit two-particle interaction is not yet included in (11.9)!

If, on the other hand, one considers real gases at not too ‘low’ temperatures with
realistic interactions, we can calculate b(T) in semiclassical approximation (in
Boltzmann statistics) by the phase-space integral

= ± V

2Z(1)
2 ∑p exp (− p2

mkBT
) = ± λ6

2V ∑p exp (− p2

mkBT
).

∑p exp (− p2

mkBT
) → 4πV

h3 ∫ ∞
0 dp p2 exp (− p2

mkBT
)

= πV
h3 √π(mkBT )3/2 = V

h3 (πmkBT )3/2.

b(T ) = ± λ6

2V
V√πmkBT

3

h3 = ± λ3

2 2−3/2 = ±2−5/2λ3 ≈ ± 0.177 λ3.



Z(2) =
1

2
∫ d3p1

(2π)3
∫ d3p2

(2π)3
∫ d3x1 ∫ d3x2 exp (−β(

p2
1 + p2

2

2m
+ v(x1 − x2)))

(11.13)

where v(x1 − x2) is the two-particle interaction in spatial coordinates. The
normalization of (11.13) becomes transparent for v(x1 − x2)) = 0, since then 
Z(2) = V 2/(2λ6) = 1/2Z(1)2, i.e. the virial coef�icient b(T) vanishes according to
(11.8). The transformation to center-of-mass (R = (x1 + x2)/2) and relative
coordinate (r = (x1 − x2)) gives

(11.14)

for a rotation invariant two-particle interaction v(r). With V 2/λ6 = Z(1)2 we
obtain from (11.8) (b(T ) = −VZ(2)/Z(1)2 + V /2)

(11.15)

The evaluation of (11.15) is usually done numerically. For a rough estimate of the
temperature dependency we consider a ‘hard core’ potential, i.e. assuming

(11.16)

where c denotes the ‘hard core’ radius and v(r) a (weakly) attractive interaction for 
r > c (i.e. more precisely |βv(r)| ≪ 1 for r > c). With the approximation (11.16) we
get

(11.17)

= 1
2λ6 ∫ d3x1d

3x2 exp (−βv(x1 − x2)),

Z(2) = 1
2λ6 ∫ d3R ∫ d3r exp (−βv(|r|))

= V
2λ6 4π ∫ ∞

0 dr r2 exp (−βv(r))

bcl.(T ) = − 1
2 4π ∫ ∞

0 dr r2 exp (−βv(r)) + V
2

= −2π ∫ ∞
0

dr r2 (exp (−βv(r)) − 1).

exp (−βv(r)) − 1 ≈ −1 if r ≤ c;
exp (−βv(r)) − 1 ≈ −βv(r) if r > c,

bcl.(T ) = 2π( c3

3 + β ∫ ∞
c

dr r2v(r)).



Considering the particles as hard spheres, then c/2 = R is the radius of a particle
while c = 2R denotes the minimum distance between the hard spheres. One
conveniently writes (11.17) as

(11.18)

In (11.18) b = 4Vk then is four times the proper volume of a particle (in the case
of hard spheres) and

(11.19)

a measure for the integrated interaction strength, which still depends on the
explicit form of v(r). For dominantly attractive interactions in the range r > c the
measure a > 0.

An application of this theory can be found in the experimental determination of
the two-body potential under the assumption of a short-range repulsive and a long-
range attractive interaction with a few free parameters. One often uses the Lennard-
Jones	potential

(11.20)

The constants ϵ and σ are obtained by �its to the virial coef�icients; the interaction
strength a is calculated as

(11.21)

and has the dimension [energy x volume].

11.2	 The	Van	der	Waals	Equation
We will now derive an equation of state, that at least qualitatively can describe a gas-
liquid	phase	transition. We divide the interaction again,

(11.22)

where vc(r) = 0 for r > c and vc(r) = ∞ for r ≤ c as in the case above for spherical
particles; va(r) then is a weaker attractive part, that can be taken into account in �irst
order perturbation theory.

bcl. = b − βa = 4( 4π
3 ( c

2 )
3) − a

kBT
= 4Vk − a

kBT
.

a = −2π ∫ ∞
c

dr r2v(r),

v(r) = 4ϵ(( σ
r
)12

− ( σ
r
)5).

a = −4πϵ( 2σ12

9c9 − σ5

c2 )

v(r) = vc(r) + va(r),



We write the free energy F as

(11.23)

with rnm = |rn − rm|. In (11.23) F0 is the free energy of a system with purely
repulsive interaction (vc). For the ideal gas the partition function (for N particles) is

(11.24)

with N ! ≈ √2πe (N/e)(N+0.5)(1 + (ne)−1 + (288n2)−2 + ⋯) ∼ (N/e)N  for
large N. In case of an ideal, repulsive gas a part of the volume is restricted or
forbidden by the interaction vc. We therefore use:

(11.25)

In (11.25) V0 is still a function of density, whose dependence we can determine by
comparing to the virial expansion for small densities N/V. To this aim we form (with 
F0 = −kBT ln Z0)

(11.26)

for V ≫ V0. This expression can be compared with the Virial expansion (11.7)

(11.27)

for b(T ) = b in the case of the ‘hard core’ interaction (see (11.18)). The comparison
for small particle densities N/V gives

(11.28)

i.e. the excluded volume per particle V0/N = b is equal to four times the particle
volume VK . In the following the relation (11.28) is also assumed at higher densities.

To calculate ⟨Va⟩ ,

(11.29)

=
N

2
∫ d3r va(r)Sc(r)

F = F0 + ⟨Va⟩; ⟨Va⟩ = 1
2 ∑m≠n va(rnm)

Zideal = 1
N ! (

V
λ3 )

N
≈ ( eV

Nλ3 )
N

ln Z0 ≈ N ln ( e(V−V0)
Nλ3 ).

P = − ∂F0

∂V ≈ kBT
∂

∂V ln Z0 = NkBT
1

V−V0
≈ N

V
kBT (1 + V0

V
)

P = N
V
kBT(1 + b(T ) N

V
+ ⋯)

V0 = Nb,

⟨Va⟩ = 1
2 ⟨∑m≠n va(|rm − rn)|⟩ = 1

2 ∫ d3r va(r) ⟨∑m≠n δ(r−|rm − rn|)⟩



we introduce the correlation function Sc(r) by

(11.30)

The correlation function is normalized to the particle number (because of the
double sum over n ≠ m), i.e.

(11.31)

and is proportional to the probability to �ind two particles at a distance r. In the most
simple approximation (for small densities) it is suf�icient to consider two isolated
particles. This approximation yields

(11.32)

for V ≫ V0. This results in

(11.33)

with a from (11.19) in the Viral expansion. Then the free	energy reads (with the
consideration of the interaction va(r))

(11.34)

The energy U results from differentiating − ln Z with respect to β:

(11.35)

with ∂λ/∂β = λ/(2β) or

U

N
=

3

2
kBT −

N

V
a.

Sc(r) = 1
N

⟨∑m≠n δ(r−|rm − rn|)⟩.

∫ ∞
0 dr Sc(r) = N ,

SC = 0 if r < c; SC = N
V

= n if r ≥ c

⟨Va⟩ = N
2 ∫ d3r va(r) Sc(r) = N

2 ∫
r⟩c d

3r va(r) N
V

= N 2

2V
4π ∫ ∞

c
dr r2 va(r) = − N 2

V
a

F = NkBT ln ( λ3N
e(V−bN)

) − N 2a
V

= −kBT ln Z.

U = − ∂
∂β ln Z = ∂

∂β (βF) = F + β ∂F
∂β

= − N 2a
V

+ N ∂
∂β ln ( λ3N

e(V−bN)
) = 3

2 NkBT − N 2a
V



The Van	der	Waals	equation �inally emerges from the differentiation of −F  with
respect to V:

(11.36)

or

P ≈ nkBT + kBTn
2b − n2a = nkBT + n2(kBTb − a)

with n = N/V . The approximation shows that with increasing temperature the �inite
proper volume leads to an effectively stronger repulsive interaction.

For the discussion of the equation of state (11.36) it is useful to consider the
behavior of isotherms (T =const.). Extrema follow from (N, T �ixed)

(11.37)

The explicit solution of the Eq. (11.37) shows two zeros for temperatures below a
critical temperature Tc. At the critical	temperature

(11.38)

both extremes coincide. The corresponding critical	volume results in

(11.39)

For the critical	pressure we get (11.38), (11.39) and (11.36)

(11.40)

All critical variables are connected by the universal relation

(11.41)

P = − ∂F
∂V = NkBT

V−Nb
− N 2a

V 2 ≈ N
V
kBT (1 + N

V
b) − N 2a

V 2

P ′
V (T ) := ( ∂P

∂V
)
T

= − NkBT

(V−bN)2 + 2aN 2

V 3 = 0.

kBTc = 8a
27b

Vc = 3bN or Vc

N
= 3b =: n−1

c .

Pc = N8a/(27b)
2bN − aN 2

9b2N 2 = ( 4
27 − 1

9 )
a
b2 = a

27b2 .

NkBTc

PcVc
= 8

3 ,



as veri�ied by insertion.

11.3	 Condensation
In Fig. 11.1 we show a typical P − V  diagram for a Van der Waals system at various
temperatures below and above Tc; the red line displays the isotherm for the critical
temperature Tc. Above the critical isothermal line the system is always in the gas
phase while below the red line a mixture of gas and liquid may occur in some region
of V.

Fig.	11.1 A typical P − V  diagram for a Van der Waals system at various temperatures below and above Tc; the red
line displays the pressure for the critical temperature Tc

In order to examine more closely the behaviour of the isotherms for T < Tc we
display in Fig. 11.2 a typical (isothermal) P-V diagram for a Van der Waals system at 
T < Tc, which has a minimum in the point B and a maximum in C.



Fig.	11.2 Illustration of a typical (isothermal) P-V diagram for a Van der Waals system at T < Tc with two extrema

The branch B − C is unphysical, since here

(11.42)

which corresponds to an unstable state. The correct curve, however, is given by a
constant (in pressure), i.e. ∂P/∂V = 0, and describes a phase transition from the
liquid to the gas phase. The—still to be determined—constant corresponds to the
vapor pressure P(T), in which both phases can coexist. Along the straight line A − D
then phase equilibrium must hold

(11.43)

Because of

(11.44)

then F1 + PV1 = F2 + PV2 or

(11.45)

with (11.36) for P(V )T . When integrating over the line (A − D) the (green) areas
in Fig. 11.3 must be of the same size (Maxwell	construction), i.e. the constant
pressure P (in phase equilibrium) must ful�ill

( ∂P
∂V )T > 0,

μ1 = μ2.

μN = G = F + PV

P(V2 − V1) = −(F2 − F1) = − ∫ F2

F1
dF

= − ∫ V2

V1
( ∂F

∂V
)
T
dV = ∫ V2

V1
P(V )T dV ,



(11.46)

The Van der Waals equation—as well as the discussion above—implies that the
interaction strength a must be a > 0, i.e. that the interaction for r > c predominantly
must be attractive. This requirement is ful�illed for most atomic and molecular gases,
such that in ‘all’ these systems there is a phase transition ‘gas ↔ liquid’ at suf�iciently
low temperatures.

Fig.	11.3 Illustration of the Maxwell construction; Eq. (11.45) implies that the (green) areas below the straight red
line A − D and above the straight line A − D must be identical, i.e. the (constant) pressure P must satisfy (11.46) at
constant temperature T

11.4	 Nuclear	Matter
A simple example of an interacting Fermi gas is the following model (with effective
two and three-particle interactions) describing the properties of ‘nuclear matter’ in a
simple way. Here ‘nuclear matter’ is understood e.g. as the interior of a 208Pb nucleus
with constant nucleon density (protons and neutrons) of ρ0 ≈ 0.16 fm−3 and binding
energy per particle EB/N ≈ −16 MeV. The nucleon density ρ = N/V  then for a
Fermi gas at the temperature T = 0 is given by

(11.47)

P = 1
V2−V1

∫ V2

V1
P(V )T dV .

ρ = g

(2π)3 ∫kF d
3k = g4π

(2π)3 ∫
kF

0
k2 dk = g

6π2 k
3
F



with degree of degeneracy g = 4 for 2 spin projections and 2 isospin components
(protons and neutrons) and the Fermi momentum

(11.48)

Setting ρ = ρ0 then (11.48) gives kF ≈ 1.33 fm−1 or PF ≈ 263 MeV/c. The Fermi
energy becomes ϵF = P 2

F/(2m) ≈ 36 MeV (with mc2 ≈ 938 MeV), such that atomic
nuclei at room temperature are always in the groundstate. The average kinetic energy
per particle amounts to

(11.49)

The kinetic energy per particle given by (11.47) and (11.48) can also be written as
a function of density,

(11.50)

The kinetic	energy	density ⟨Tkin⟩/V  is given by multiplying (11.50) by N/V = ρ,

(11.51)

However, this is a pure non-interacting Fermi gas, which is unbound due to the
Pauli pressure, and one has to introduce an effective interaction to obtain a bound
state of nuclear matter. A simple variant is to assume short-range 2 and 3-particle
interactions ∼ δ3(r − r′), such that the total energy density can be written as

(11.52)

with the parameters V2 for an attractive potential energy density (2-particle
interaction) and V3 for a repulsive potential energy density (3-particle interaction).
This energy functional gives for the mean	�ield	of	nucleons

(11.53)

PF = ħkF = ħ( 6π2

g
ρ)

1/3
.

⟨Tkin⟩
N

== 1
ρ

g4π

(2π)3 ∫
kF

0 k2 ħ2

2m k2 dk = 3
5 ϵF .

⟨Tkin⟩
N

= 3
5

ħ2c2

2mc2 ( 6π2

g
ρ)

2/3
= 3ħ2c2

10mc2 ( 6π2

g
)

2/3
ρ2/3 = CTρ

2/3.

⟨Tkin⟩
V

= CTρ
5/3.

⟨H⟩
V

(ρ) = CTρ
5/3 − V2

2 ρ2 + V3

3 ρ3

UH(ρ) = ∂
∂ρ

⟨Vpot⟩

V
(ρ) = −V2ρ + V3ρ

2



as the derivative of the potential energy density with respect to ρ. The energy per
particle is (after division by ρ)

(11.54)

The parameters V2 and V3 are determined from the requirement that (11.54) has
a minimum for ρ = ρ0,

(11.55)

and the binding energy per particle (–16 MeV) amounts,

(11.56)

From the Eqs. (11.55) and (11.56) we can now determine the parameters numerically
to V2 ≈ 765 MeV fm3 and V3 ≈ 2782 MeV fm6, which gives the binding energy per
particle (11.54) and thus the equation of state (EoS) of symmetric nuclear matter. As
Fig. 11.4 shows, this results in a minimum of the binding energy due to the
compensation of kinetic energy and the attractive and repulsive parts of the
interaction (11.52).

Fig.	11.4 Binding energy per nucleon EB/N  as a function of density ρ (in units of ρ0). The kinetic energy per
nucleon and the potential energy per nucleon are represented by the top (red) and bottom (blue) lines, respectively

⟨H⟩
N

(ρ) = CTρ
2/3 − V2

2 ρ + V3

3 ρ2 = EB

N
.

d
dρ

⟨H⟩
N

|ρ0 = 2CT

3 ρ
−1/3
0 − V2

2 + 2V3

3 ρ0 = 0

⟨H⟩
N

|ρ0 = CTρ
2/3
0 − V2

2 ρ0 + V3

3 ρ2
0 = −16 MeV .



Since at saturation (ρ = ρ0) the (negative) potential energy per particle is larger
than the kinetic energy per particle in magnitude,

(11.57)

nuclear matter in its groundstate can be considered as a liquid.
A characteristic quantity for the EoS of nuclear matter is the

incompressibility de�ined by

(11.58)

This value is a bit high compared to the current experimental knowledge, but a
direct consequence of the simple functional (11.52).

The nuclear equation of state can be calculated (numerically) at �inite
temperature T, where the density is determined as a function of temperature T and
the chemical potential μ as

(11.59)

with ϵ(p) = p2/(2m). The kinetic energy density results in

(11.60)

Assuming that the potential energy density only depends on ρ and does not
explicitly depend on T or μ, we obtain for the total energy density

(11.61)

and the binding energy per particle

(11.62)

As Fig. 11.5 shows, the minimum in the binding energy per particle becomes
�latter with increasing temperature T up to a critical temperature Tc ≈ 20 MeV, above
which EB/N  becomes ≥ 0. A bound state of nuclear matter then is no longer

⟨Tkin⟩

⟨|V |⟩
< 1,

K = 9ρ2
0(

d2

dρ2

⟨H⟩
N

)|ρ0 ≈ 385 MeV .

ρ(T ,μ) = 2
π2

1
ħ3c3 ∫

∞
0 dp p2 1

(exp((ϵ(p)−μ)/(kBT ))+1)

⟨Tkin⟩
V

(T ,μ) = 2
π2

1
ħ3c3 ∫

∞
0 p2dp

ϵ(p)
(exp((ϵ(p)−μ)/(kBT ))+1)

.

⟨H⟩
V

(T ,μ) = ⟨Tkin⟩
V

(T ,μ) − V2

2 ρ(T ,μ)2 + V3

3 ρ(T ,μ)3

EB

N
(T ,μ) = ⟨H⟩

N
(T ,μ) = ⟨Tkin⟩

V ρ(T ,μ)
(T ,μ) − V2

2 ρ(T ,μ) + V3

3 ρ(T ,μ)2.



thermodynamically preferred compared to a free nucleon gas (with ρ = 0). The phase
transition at Tc is of 1st order, since between the minima at ρ = 0 and �inite ρ a
positive maximum exists in EB/N . Since for the critical temperature and density the
potential energy density and the kinetic energy density have the same magnitude one
can talk about a liquid-gas	phase	transition.

Note: The simple model presented here only delivers qualitatively the properties
of symmetric nuclear matter, such that the explicit characteristic quantities quoted
should not be identi�ied with ‘realistic’ values.

Fig.	11.5 Binding energy per nucleon (green line) as a function of the density ρ (in units of ρ0) for various
temperatures T (in MeV). At a temperature of T ≈ 20 MeV a phase transition of 1st order can be seen, i.e. for 
EB/N ≈ 0

In summarizing this chapter we have set up the framework for the description of
real interacting systems in terms of the Virial expansion and discussed classical Van
der Waals systems as well as ‘nuclear matter’ as an example for an interacting Fermi
system. Both systems are found to show a liquid-gas phase transition of 1st order.
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In this chapter we will discuss the response of matter to external
perturbations by electromagnetic �ields and point out the properties of
matter in the limit of weak and strong �ields.

If one inserts matter into a magnetic (electric) �ield, it creates a
macroscopic magnetization (polarization). The two following effects play
an opposite role:

1. Already existing dipole moments (permanent dipole moments) are
aligned by the external �ield. This leads to the temperature dependent
paramagnetism or the corresponding electrical analogue, the
orientation	polarization (see electrodynamics).

2. External �ields can induce dipole moments: An electric �ield can
move the centers of mass of positive and negative charges in atoms and
molecules against each other and thus create (or change) electric dipoles.
Magnetic �ields change the electron states, especially the orbital angular
momenta; associated with this is a change in the magnetic moments of
the atoms: diamagnetism.

In practice, both phenomena occur simultaneously; the statement,
that a substance is paramagnetic implies that that paramagnetism
dominates the diamagnetism.

The �ield acting at an atomic moment stems from the external	�ield
and that—by the atomic	moments of the environment—generated
�ield. We will in the following neglect the second part; this is legitimate
e.g. for the treatment of the paramagnetism of gases in contrast to
ferromagnetism, where the second part is essential.
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In the following we will examine a few simple cases for �ields that are
constant in space and time.

12.1	 De�initions
We de�ine the magnitude of magnetization M by (the �ield strength B is
considered here as a classical quantity)

(12.1)

where B is the magnitude of the magnetic �ield and H is the
Hamiltonian of the system in the presence of the external �ield. Such a
de�inition is plausible since −→

μ ⋅ B is the energy of a magnetic moment 
→
μ in the �ield B.

Accordingly, we have

(12.2)

for the amount of polarization; E is the magnitude of the electric
�ield E.

12.2	 Theorem	of	Bohr–van	Leeuwen

Within the framework of a strictly classical theory the magnetization
is always zero.

The proof of this theorem is extremely simple: Since there is no spin
in classical physics, the magnetic �ield in Hcl. appears only in the form

(12.3)

M =|
→
M|= −⟨ ∂H

∂B ⟩,

P =: −⟨ ∂H
∂E ⟩

∑i
1

2mi
(pi − e

c
A(ri;t))2.



The partition function Zg,cl.—formed with Hcl.— is invariant with
respect to the gauge transformation

(12.4)

since the classical distribution function ρcl. for the canonical ensemble
only depends on the magnetic �ield via Hcl..

Magnetism	thus	is	a	typical	quantum	mechanical	phenomenon.

12.3	 Quantummechanical	Treatment	of
Paramagnetism
In order to be able to examine paramagnetism in its purest form, we
consider a system of N localized magnetic moments in an external �ield

(12.5)

The magnetic moments arise from the spin of the particles under
consideration, e.g. of atoms or atomic nuclei with total angular
momentum J ≠ 0.

The Hamiltonian of such a system then has the simple form
(interactions between the individual spins are neglected):

(12.6)

with

(12.7)

where m is the electron or nucleon mass, g is the gyromagnetic factor 
(= 2 for electron spins) and

(12.8)

pi → pi − e
c

A(ri),

B = (0, 0,B).

H = −μBg J ⋅ B = −μBg B Jz

μB = eħ
2mc

= eħc
2mc2 ,

J = ∑N
i=1 ji



the total angular momentum of the system (in units of ħ). The possible
energies of the system are

(12.9)

with

(12.10)

For given temperature T the statistical operator (canonical ensemble) is

(12.11)

and we obtain, since ⟨H⟩ is additive from the contributions of the
individual moments:

(12.12)

with the abbreviation

(12.13)

and

(12.14)

if j is the spin of the individual particles. From (12.12) follows

(12.15)

i.e. the average of the operator
(12.16)

EmJ = −μBg B mJ

mJ = −J, −J + 1, . . . . . , +J.

ρ = ρc =
exp(−βH)

Tr(exp(−βH))

⟨H⟩ = −K N ∑mm
exp(βKm)

∑nexp(βKn)

K := μBg B,

m = −j, −j + 1, . . . . , +j

M = μBg N ∑mm
exp(βKm)

∑nexp(βKn)
,



as expected.
The summation in (12.15) can be carried out directly. With the

abbreviation

(12.17)

we �irst get (geometric series!)

(12.18)

or in symmetrical form

(12.19)

Writing the partition sum (for N particles) as

(12.20)

then

(12.21)

From this we get

(12.22)

�inally by differentiation of (12.21) (with ∂η/∂B = βμBg)

(12.23)

if we introduce the Brillouin-function by

Mz = μBg Jz

η := βK = μBg B

kBT

∑j
m=−j (exp η)m = ∑m exp (ηm) =

[exp(−ηj)−exp{η(j+1)}]

1−exp(η)

∑j
m=−j exp (η)m =

[exp(−ηj)−exp{η(j+1)}]

1−exp(η)

exp(−η/2)

exp(−η/2)
=

sinh[(j+1/2)η]

sinh(1/2η)
.

Zc = (∑m exp (ηm))N ,

ln Zc = N{ln [sinh ((j + 1/2)η)]− ln [sinh (1/2η)]}.

M = kBT
∂ln Zc

∂B = −
∂⟨H⟩
∂B

M = N μBg {(j + 1
2

) coth ([j + 1
2

]η) − 1
2

coth ( 1
2
η)}

= N μBg j Bj(η),



(12.24)

To understand the shape of Bj(η), we discuss the limiting cases 
η ≫ 1 and η ≪ 1.

1. η ≫ 1 : Strong	�ields/low	temperatures; in this case

(12.25)

such that

(12.26)

for η → ∞. Accordingly,

(12.27)

All elementary moments are aligned in the direction of the �ield; M
takes the maximum value.

2. η ≪ 1 : Weak	�ields/high	temperatures. We use in this case

(12.28)

such that

(12.29)

or

(12.30)

with the magnetic	susceptibility

Bj(η) =: 1
j

{(j + 1
2

) coth ([j + 1
2

]η) − 1
2

coth ( 1
2
η)}.

coth (x) → 1 for x → ∞

Bj(η) → 1
j

{(j + 1
2 ) − 1

2 } = 1

M = N μBg j.

coth (x) ≈ 1
x

+ 1
3 x for x ≪ 1,

Bj(η) ≈
(j+1)

3 η,

M = χ B

2 2



(12.31)

Equation (12.31) is called Curie’s	law.

12.4	 Classical	Theory	of	Paramagnetism	and
Orientation	Polarization
Permanent magnetic moments classically can have any orientation with
respect to an external magnetic �ield. The average value of the magnetic
moment of a substance can thus be determined by averaging over all
possible directions,

(12.32)

Here ϑ is the angle between B and →μ; −→
μ ⋅ B = −μ0B cos ϑ is the

energy of the moment →μ in the magnetic �ield B; every moment delivers
the same contribution on average, hence the factor N. The integrals in
(12.32) are straight forward, the result is:

(12.33)

We get the same result if in (12.23) we examine the limiting case 
j → ∞ with the identi�ication

(12.34)

This is plausible because with increasing j the number of magnetic states
increases, each of which corresponds to a speci�ic classical orientation.

According to (12.32) one can also calculate the polarization of a
dielectric. For the average value of the electric dipole moment P in the

χ = N
g2μ2

B
j(j+1)

3kBT
= ξ

T
.

Mcl. = Nμ0
∫ 1

−1 d(cosϑ)cosϑ exp(βμ0Bcosϑ)

∫ 1
−1 d(cosϑ)exp(βμ0Bcosϑ)

.

Mcl. = Nμ0{coth (βμ0B) − 1
βμ0B

}.

μ0 ≡ μBg j.



�ield El we get

(12.35)

Here P0 is the magnitude of the elementary dipole moment.

12.5	 Magnetic	Cooling
The entropy of the spin system under consideration can be computed
from (12.21) via (5. 30). The result is shown qualitatively in Fig. 12.1.

Fig.	12.1 Example for magnetic cooling by adiabatic switching off and isothermal switching on of a
magnetic �ield B

The essential points are clear even without a calculation: according to
the 3rd law of thermodynamics S → 0 holds for T → 0 regardless of the
other parameters on which S depends, e.g. the magnetic �ield B;
according to our statistical introduction of entropy it is clear that—for
other identical parameters—S decreases with increasing �ield strength B.

The principle of magnetic cooling is shown in Fig. 12.1: First we
switch on a magnetic �ield isothermal; by adiabatic switching off (S =
const.) we then achieve a temperature reduction, which is larger for a
stronger magnetic �ield. As in Sect. 7. 9 we �ind that the absolute zero
temperature cannot be achieved within a �inite number of such steps.

Pcl. = N P0{coth (βP0E) − 1
βP0E

}.



12.6	 Negative	Temperatures
One would expect that the entropy of a system increases with increasing
energy monotonically since the number of possible realizations of a
macro-state usually grows with the energy. From

(12.36)

then it follows that T is positive.
Now there are systems (like those discussed in Sect. 11. 3, spin

systems), whose energy not only has a lower, but also an upper limit. For
particles with spin 1/2 e.g. 1/2 NK is the upper limit, −1/2 NK the
lower limit. Both states have the same number of possible realizations
(i.e. exactly 1—all spins are parallel or antiparallel to the magnetic �ield);
thus both states have the same entropy since the same information is
available. Accordingly we get qualitatively the curve shown in Fig. 12.2.

Fig.	12.2 Entropy S as a function of the internal energy U for an external spin system in a magnetic
�ield

For U < 0 the derivative of S and therefore of T is positive, however,
for U > 0 negative. To parameterize the line above it makes sense not to
introduce T, but τ = −1/T ; then also τ  grows with U.

States of negative temperature can be realized experimentally by
nuclear moments in crystals, provided that the spin-lattice interaction is
weak compared to the spin-spin interaction (which was not previously
recorded), which is responsible for achieving thermal equilibrium in the
spin system. The nuclear spins are �irst magnetized in a strong magnetic
�ield and then their direction reversed so quickly that the spins cannot

1
T

= ( ∂S
∂U

)
V ,N



follow. Then from the original distribution ρn ∼exp {−En/(kBT )} a
new distribution emerges with a population	inversion 
ρ′
n ∼exp {En/(kBT )} =exp {−En/(−kBT )}. States with population

inversion play an important role in maser and laser-physics.
In summarizing this chapter we have investigated the paramagnetism

of matter in an external magnetic �ield and presented the classical theory
of paramagnetism and orientation polarization. Moreover, we have
shown the principle of magnetic cooling and the impossibility to reach
the absolute zero temperature within a �inite number of cooling steps.



Part	IV
Non-equilibrium	Dynamics
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While so far we have considered physical systems of fermions, bosons or classical particles in
thermodynamic equilibrium, or their response with respect to external perturbations (Chap. 8),
it remains unclear how these systems reach the �inal equilibrium state in time and what are the
characteristic timescales to achieve equilibrium. The answer to these questions requires the
formulation of a consistent non-equilibrium dynamics that describes the explicit time evolution
of the physical system. On the one hand, one can use the time-dependent Schrödinger equation
and derive a system of kinetic equations using Green’s functions, on the other hand, the time
evolution of the N-particle density matrix can also be considered directly in suitable
approximations. In the following we will present the density-matrix formalism for weakly
interacting N-particle fermion systems, that will provide the basis for the derivation of kinetic
theories.

13.1	 The	Density	Matrix	Formalism
The starting point of a corresponding theory is the von Neumann equation (3. 4) for the density
operator ρN , which describes a N-particle fermion system in a pure or mixed state,

(13.1)

where HN  represents the N-particle Hamiltonian. In (13.1) we have used i ≡ ξi for the set of
variables of particles i for abbreviation (e.g.: i ≡ ri,σi, τi ≡ position coordinate, spin, isospin
etc.). If the system of fermions only interacts via a two-particle interaction v(ij) between
particles i and j, which approximately applies to many physical cases, then the Hamiltonian
operator is explicitly written as

(13.2)

where

(13.3)

represents the single-particle part of HN , consisting of the operator of the kinetic energy of
the particle i and possibly an external mean �ield U 0(i). However, Eq. (13.1) in the form above is

iħ ∂
∂t ρN(1, … ,N ;1′ …N ′;t) = [HN , ρN ],

HN = ∑N
i=1 h

0(i) + ∑N−1
i<j v(ij),

h0(i) = t(i) + U 0(i)
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practically unsolvable for a many-particle system, such that one has to rely on approximate
solutions.

For this purpose we introduce reduced	density	matrices ρn(1 …n, 1′ …n′;t), which are
de�ined via the formation of traces over the particles n + 1, … ,N  from the N particle density 
ρN :

(13.4)

While the relative normalization between ρn and ρn+1 is �ixed, we can freely choose the
absolute normalization of ρN . It is advisable not to choose the normalization to 1—as in the
previous chapters—but to N!, such that the trace over the single-particle density matrix

(13.5)

where a†
i  and ai are the fermion creation and annihilation operators with the known anti-

commutation relations (see quantum mechanics). For the two-particle density matrix the
following normalization follows:

(13.6)

The traces of the density matrices ρn are obtained in analogy (for n ≤ N),

(13.7)

since for n = N  the density matrix ρN  is normalized to N! according to (13.7).
If one applies the partial trace formation (i.e. Tr(n+1,…,N)) to the von Neumann equation

(13.1), one obtains a coupled system of �irst order differential equations in time, denoted by the
BBGKY hierarchy (according to the authors Bogolyubov, Born, Green, Kirkwood and Yvon),

(13.8)

for 1 ≤ n ≤ N  with ρN+1 = 0. The explicit equations for n = 1 and 2, which we only need in
the following, are:

(13.9)

ρn(1 …n, 1′ …n′;t)
= 1

(N−n)!
Tr(n+1,…,N)ρN(1 …n,n + 1 …N , 1′ …n′,n + 1 …N ;t).

Tr(1=1′)ρ(11′;t) = ∑i⟨a
†
i
ai⟩ = N ,

Tr(1,2)ρ2 = ∑i,j⟨a
†
ia

†
jajai⟩ = −∑i,j⟨a

†
ia

†
jaiaj⟩

= ∑i,j{⟨a
†
iaia

†
jaj⟩ − ⟨a

†
iaj⟩δij}

= (N − 1)∑j⟨a
†
jaj⟩ = N(N − 1).

Tr(1,…,n)ρn = N !
(N−n)!

,

iħ ∂
∂t

ρn = [∑N
i=1 h

0(i), ρn] + [∑n−1
1=i<j v(ij), ρn]

+∑N
i=1 Tr(n+1)[v(i,n + 1), ρn+1]

iħ ∂
∂t ρ1 = [h0(1), ρ1] + Tr(2)[v(12), ρ2],



(13.10)

which are not yet closed since the time evolution of ρ2 is still determined by the 3-particle
density matrix ρ3. In order to obtain a closed system of equations, an approximation for ρ3 must
be carried out.

13.2	 Separation	of	Correlation	Functions
Since for independent particles (without residual interactions) the N particle states can be
written as antisymmetric products of single-particle wave functions (Slater determinants),
where ρN  becomes a bilinear form of Slater determinants ρN = ∑i,j pij|Ψi⟩⟨Ψj|, one �irst
represents the reduced density matrices ρn as antisymmetric products of single-particle density
matrices and introduces corrections for interacting particles in the form of correlation functions
or matrices. This procedure is known in the literature as cluster	expansion. In the present
context only the explicit cluster expansion up to the 3rd order is of interest, which is introduced
as follows,

(13.11)

(13.12)

with the 2-particle antisymmetrization operator Aij = 1 − Pij, where Pij denotes the
operator for the exchange of particles i and j. The expansion of ρ3 includes the antisymmetrized
triple products of ρ and the antisymmetrized products of ρc2,

(13.13)

where c3 captures residual 3-body correlations.
If one neglects the 2-particle correlation function c2 in (13.12), one obtains the well-known

limit of independent particles; this also implies that all effects of the residual interaction are

iħ ∂
∂t

ρ2 = [∑2
i=1 h

0(i), ρ2] + [v(12), ρ2] + Tr(3)[v(13) + v(23), ρ3],

ρ1(11′) = ρ(11′),

ρ2(12, 1′2′) = ρ(11′)ρ(22′) − ρ(12′)ρ(21′) + c2(12, 1′2′)

= ρ20(12, 1′2′) + c2(12, 1′2′) = A12ρ(11′)ρ(22′) + c2(12, 1′2′),

ρ3(123, 1′2′3′) = ρ(11′)ρ(22′)ρ(33′) − ρ(12′)ρ(21′)ρ(33′)

−ρ(13′)ρ(22′)ρ(31′) − ρ(11′)ρ(32′)ρ(23′) + ρ(13′)ρ(21′)ρ(32′)

+ρ(12′)ρ(31′)ρ(23′) + ρ(11′)c2(23, 2′3′) − ρ(12′)c2(23, 1′3′)

−ρ(13′)c2(23, 2′1′) + ρ(22′)c2(13, 1′3′) − ρ(21′)c2(13, 2′3′)

−ρ(23′)c2(13, 1′2′) + ρ(33′)c2(12, 1′2′) − ρ(31′)c2(12, 3′2′)

−ρ(32′)c2(12, 1′3′) + c3(123, 1′2′3′),



described by c2 in (13.12).
The 2-particle correlation function c2 has the same symmetries under particle exchange as

the hermitian 2-particle density matrix ρ2, i.e.

(13.14)

The crucial step in the cluster expansions required here is now the neglect of the 3-particle
correlation function c3 in (13.13) since for moderate residual interactions the 3-particle density
matrix ρ3 is represented quite well by the remaining terms in (13.13). With the approximation 
c3 = 0 the system of equations (13.9) and (13.10) is closed and by inserting (13.12) and (13.13)
into (13.9) and (13.10) we obtain the �irst equations of the correlation	dynamics for the time
evolution of ρ(11′;t)

(13.15)

and for the time evolution of c2 (after some lengthy calculation),

(13.16)

Equations (13.15) and (13.16) so far have only been solved numerically for special problems,
such that an explicit discussion goes beyond the scope of this presentation. To compactify and
clarify the physical terms, it is useful to introduce the single-particle	Hamiltonian	operator

c2(12, 1′2′) = −c2(12, 2′1′) = −c2(21, 1′2′) = c∗
2(1′2′, 12) etc.

iħ ∂
∂t ρ(11′;t) = [h0(1) − h0(1′)]ρ(11′;t)

+Tr(2=2′)[v(12)A12 − v(1′2′)A1′2′ ]ρ(11′;t)ρ(22′;t)

+Tr(2=2′)[v(12) − v(1′2′)]c2(12, 1′2′;t)

iħ ∂
∂t

c2(12, 1′2′;t) = [h0(1) + h0(2) − h0(1′) − h0(2′)]c2(12, 1′2′;t)

+ Tr(3=3′)[v(13)A13 + v(23)A23 − v(1′3′)A1′3′ − v(2′3′)A2′3′ ]

ρ(33′;t)c2(12, 1′2′;t)

+[v(12) − v(1′2′)]ρ20(12, 1′2′)

−Tr(3=3′){v(13)ρ(23′;t)ρ20(13, 1′2′;t) − v(1′3′)ρ(32′;t)ρ20(12, 1′3′;t)

+v(23)ρ(13′;t)ρ20(32, 1′2′;t) − v(2′3′)ρ(31′;t)ρ20(12, 3′2′;t)}

+[v(12) − v(1′2′)]c2(12, 1′2′;t)

−Tr(3=3′){v(13)ρ(23′;t)c2(13, 1′2′;t) − v(1′3′)ρ(32′;t)c2(12, 1′3′;t)

+v(23)ρ(13′;t)c2(32, 1′2′;t) − v(2′3′)ρ(31′;t)c2(12, 3′2′;t)}

+Tr(3=3′){[v(13)A13A1′2′ − v(1′3′)A1′3′A12] ρ(11′;t)c2(32, 3′2′;t)

+[v(23)A23A1′2′ − v(2′3′)A2′3′A12] ρ(22′;t)c2(13, 1′3′;t)}.



(13.17)

which not only describes the interaction with the external �ield U 0 but also with the average
self-interaction U s(i) of the particles among each other. Furthermore, the Pauli-blocking
operator

(13.18)

and the effective interaction in the medium V =(ij) is de�ined by

(13.19)

where the exchange operators in Q= (13.18) act on all terms to the right.
The equations for ρ and c2 can then be written in more compact form,

(13.20)

and

(13.21)

Equation (13.20) describes the propagation of a particle in the mean-�ield U 0(i) + U s(i)
taking into account the two-particle dynamics, which is speci�ied in more detail in (13.21). While
in (13.21) the terms with h(i) now describe the propagation of 2 particles in the mean �ield, the
terms with V = can be traced back to 2-particle interactions in the medium (short-range
correlations). The residual terms describe long-range correlations, which are important for the
damping of collective modes. Since a detailed discussion of the individual terms goes beyond the
scope of this book we refer the interested reader to the respective literature.

h(i) = h0(i) + U s(i) = h0(i) + Tr(n=n′)v(in)Ainρ(nn′;t),

h(i′) = h0(i′) + U s(i′) = h0(i′) + Tr(n=n′)v(i′n′)Ai′n′ρ(nn′;t)

Q=
ij = 1 − Tr(n=n′)(Pin + Pjn)ρ(nn′;t);

Q=
i′j′ = 1 − Tr(n=n′)(Pi′n′ + Pj′n′)ρ(nn′;t),

V =(ij) = Q=
ij
v(ij);V =(i′j′) = Q=(i′j′)v(i′j′),

iħ ∂
∂t ρ(11′;t) − [h(1) − h(1′)]ρ(11′;t)

= Tr(2=2′)[v(12) − v(1′2′)]c2(12, 1′2′;t),

iħ ∂
∂t c2(12, 1′2′;t) − [∑2

i=1 h(i) − ∑2′

i′=1′ h(i′)]c2(12, 1′2′;t) =

[V =(12) − V =(1′2′)]ρ20(12, 1′2′;t)

+[V =(12) − V =(1′2′)]c2(12, 1′2′;t)

+Tr(3=3′){[v(13)A13A1′2′ − v(1′3′)A1′3′A12] ρ(11′;t)c2(23, 2′3′;t)

+[v(23)A23A1′2′ − v(2′3′)A2′3′A12] ρ(22′;t)c2(13, 1′3′;t)}.



Focussing on weakly interacting Fermi systems we will in the following consider (13.21) in
lowest order in the interaction, i.e.

(13.22)

13.3	 Expansion	in	a	Single-Particle	Basis
The spatial representation of the coupled equations for ρ and c2 (13.20) and (13.21) is not
particularly suitable in its current form for numerical integration or for further analytical
approximations. Therefore, we expand ρ and c2 within an initially arbitrary single-particle basis 
φα ≡ |α⟩,

(13.23)

(13.24)

and insert these expansions into (13.20) and (13.22). By multiplying from the left with 
φ∗
α(r1)φα′(r1′) or φ∗

α(r1)φ∗
β(r2)φα′(r1′)φβ′(r2′) for (13.21) and integration over d3r1d

3r1′  or 
d3r1d

3r2d
3r1′d3r2′  we obtain the equations for the time evolution of the coef�icients ραα′(t),

(13.25)

or from (13.22) for Cαβα′β′(t)

(13.26)

with

(13.27)

and the one-particle Hamiltonian (cf. (13.17))

(13.28)

Furthermore, we have used

iħ ∂
∂t

c2(12, 1′2′;t) − [∑2
i=1 h(i) − ∑2′

i′=1′ h(i′)]c2(12, 1′2′;t) =

[V =(12) − V =(1′2′)]ρ20(12, 1′2′;t)

ρ(11′;t) = ∑λλ′ ρλλ′(t)φλ(r)φ∗
λ′(r′),

c2(12, 1′2′;t) = ∑λγλ′γ ′ Cλγλ′γ ′(t)φλ(r1)φγ(r2)φ∗
λ′(r′

1)φ∗
γ ′(r′

2),

iħ ∂
∂t ραα′ − ∑λ[hαλρλα′ − ραλhλα′ ]

= ∑β∑λγ{⟨αβ|v|λγ⟩Cλγα′β − Cαβλγ⟨λγ|v|α′β⟩}

iħ ∂
∂t Cαβα′β′ − ∑λ{hαλCλβα′β′ + hβλCαλα′β′ − Cαβλβ′hλα′ − Cαβα′λhλβ′}

= ∑λλ′γγ ′{Q=
αβλ′γ ′⟨λ′γ ′|v|λγ⟩(ρ20)λγα′β′ − (ρ20)αβλ′γ ′⟨λ′γ ′|v|λγ⟩Q=

λγα′β′}

Q=
αβλ′γ ′ = δαλ′δβγ ′ − δαλ′ρβγ ′ − ραλ′δβγ ′ ,

hαλ = ⟨α|t|λ⟩ + ⟨α|U 0|λ⟩ + ∑γγ ′⟨αγ ′|v|λγ⟩
A
ργγ ′ .



(13.29)

and

(13.30)

for the antisymmetric matrix element of the interaction v.
Equations (13.25) and (13.26) form the starting point for the formulation of kinetic

theories to be considered in the following; they are completely antisymmetric in the matrix
elements, closed in ρ and c2 and allow for the quantum mechanical description of fermion
systems of weak residual interaction also far from equilibrium. As will be shown in the next
section, they satisfy the conservation laws of fermion number, momentum, angular momentum
and total energy.

13.4	 Conservation	Laws
(i)	Particle	number	conservation
The particle number of the system is given by the trace of ρ or in the discrete basis by

(13.31)

Differentiating with respect to time and inserting the equation of motion for ραα(t) gives

(13.32)

as can easily be seen by renaming the summation indices. This implies that the particle number
is always a conserved quantity.

(ii)	Conservation	of	momentum	(angular	momentum)
The expectation value of the total momentum of the system is given by

(13.33)

since the momentum p is a single-particle operator. To prove the conservation of momentum,
the time derivative of (13.33) is calculated and the equation of motion for ρλα(t) is inserted
again;

(13.34)

as can be shown again by renaming the summation indices. In analogy to the momentum P, one
also proves the conservation of the total angular momentum L, which results from the sum of
the single-particle angular momenta li, provided that [v, li] = 0.

(ρ20)αβα′β′ = ραα′ρββ′ − ραβ′ρβα′ = Aαβραα′ρββ′

⟨αβ|v|α′β′⟩A = ⟨αβ|v|α′β′⟩ − ⟨αβ|v|β′α′⟩

N(t) = ∑α ραα(t).

d
dt

N(t) = ∑α ρ̇αα(t) = − i
ħ ∑αλ[hαλρλα − ραλhλα]

− i
ħ ∑αβγλ[⟨αβ|v|γλ⟩Cγλαβ − Cαβγλ⟨γλ|v|αβ⟩] = 0,

⟨P⟩ = Tr(p ρ) = ∑α⟨α|p ρ|α⟩ = ∑αλ⟨α|p|λ⟩ρλα,

iħ d
dt

⟨P⟩ = ∑αλ⟨α|p|λ⟩iħρ̇λα

= ∑αλλ′⟨α|p|λ⟩[hλλ′ρλ′α − ρλλ′hλ′α]

+∑αβγλλ′⟨α|p|λ⟩[⟨λβ|v|λ′γ⟩Cλ′γαβ − Cλβλ′γ⟨λ′γ|v|αβ⟩] = 0,



(iii)	Conservation	of	energy
For every closed system (here U 0 ≡ 0) the total energy must be a conserved quantity. It is made
up of the kinetic energy

(13.35)

the energy of the mean	�ield

(13.36)

and the correlation	energy

(13.37)

Since the total energy is a two-particle operator, to prove the conservation of energy one now
needs the explicit equation of motion for the matrix elements of Cαβα′β′ , i.e.

(13.38)

as is found by inserting ρ̇ from (13.25) and Ċ from (13.26). This implies that the energy is also a
conserved quantity for all times within the framework of the coupled Eqs. (13.25) and (13.26).

13.5	 The	Vlasov	Equation
In order to clarify the physical content of Eqs. (13.25) and (13.26) more closely, we �irst consider
Eq. (13.25) in the limit Cαβα′β′ ≡ 0, i.e.

(13.39)

and transform to the spatial representation ρ(x, x′;t) = ⟨x′|ρ(t)|x⟩. To simplify the notation,
we omit the explicit indices for spin (isospin etc.) in the following (as in (13.39)), since they are
initially irrelevant for the physical considerations.

Furthermore, we restrict ourselves to local potentials U(x;t), which may consist of an
external �ield U 0(x;t) as well as the self-interaction of the fermions U s(x, t) (see (13.17)),

(13.40)

where the exchange term of the interaction (Fock term) has been neglected for the sake of
simplicity.

In the spatial representation for local potentials U(x;t) Eq. (13.39) reads as follows,

(13.41)

Ekin = ∑αλ⟨α|t|λ⟩ρλα,

EMF = 1
2 ∑αα′λλ′ ραα′⟨α′λ′|v|αλ⟩

A
ρλλ′ ,

Ecor = 1
2 ∑αα′λλ′⟨αλ|v|α′λ′⟩Cα′λ′αλ.

d
dt

E = d
dt

{Ekin + EMF + Ecor}

= ∑αλ⟨α|t|λ⟩ρ̇λα + 1
2 ∑αα′λλ′⟨α′λ′|v|αλ⟩

A
[ρ̇λλ′ραα′ + ρλλ′ ρ̇αα′ ]

+ 1
2
∑αα′λλ′⟨α′λ′|v|αλ⟩Ċαλα′λ′ = ⋯ = 0,

∂
∂t

ραα′ + i
ħ [∑λ hαλρλα′ − ραλhλα′ ] = 0,

U(x;t) = U 0(x;t) + ∑spin, isospin ∫ d
3x2 v(x − x2)ρ(x2, x2;t),

∂
∂t ρ(x, x′;t) + i

ħ {− ħ2

2m ∇2
x + U(x;t) + ħ2

2m ∇2
x′ − U(x′;t)}ρ(x, x′;t) = 0,



which, however, does not improve our understanding very much. It is useful to transform to
the phase-space representation using a Wigner	transformation 

(13.42)

with

(13.43)

The quantum mechanical phase-space density ρ(r, p;t) in the classical limiting case transforms
into the probability of �inding a particle at position r with momentum p at time t. Independently
of the classical limit, the integration of (13.42) over the momentum yields

(13.44)

the spatial density ρ(r;t), while integration over space yields the momentum space density 
ρ(p;t),

(13.45)

the factor 1/(2πħ)3 = h−3 in (13.44) is responsible for the quantization in phase space per
intrinsic degree of freedom of the particles (spin, isospin, etc.).

Remark: The Wigner transform (13.42) is generally not a positive de�inite function of real
numbers for quantum mechanical systems, but a hermitian operator with complex values in
phase-space representation. For systems with a suf�iciently large number of particles, however,
the imaginary parts of ρ(r, p;t) become arbitrarily small, such that one can accept the
interpretation in the classical limiting case when considering suitable averages over phase-space
volumes.

If we now carry out a Wigner transformation of (13.41), we obtain after a few lines (using 
∇2

r+s/2
− ∇2

r−s/2
= 2∇s ⋅ ∇r) and partial integration:

(13.46)

This equation—due to the unitarity of the Wigner transformation—is equivalent to (13.41).
In (13.46) we can now insert the approximation

(13.47)

ρ(r, p;t) = ∫ d3s exp (− i
ħ p ⋅ s) ρ(r + s/2, r − s/2;t)

x = r + s/2, x′ = r − s/2 or r = (x + x′)/2, s = x − x′.

ρ(r;t) = 1

(2πħ)3 ∫ d3p ρ(r, p;t)

ρ(p;t) = ∫ d3r ρ(r, p;t);

∂
∂t ρ(r, p;t) +

p

m
⋅ ∇rρ(r, p;t)

+ i
ħ ∫ d

3s exp (− i
ħ p ⋅ s)[U(r + s/2;t) − U(r − s/2;t)]

ρ(r + s/2, r − s/2;t) = 0.

[U(r + s/2) − U(r − s/2)] ≈ s ⋅ ∇rU(r)



for the case of weakly varying U(r;t) in space—which is exact for the harmonic oscillator—and
obtain with the identity

(13.48)

the Vlasov	equation:

(13.49)

It is equivalent to

(13.50)

from which, by comparison with (13.49), the classical equations of motion for ṙ and ṗ follow,

(13.51)

Consequently, in the limit A → ∞ the distribution

(13.52)

is a solution of the Vlasov equation (13.49), if ri(t), pi(t) are solutions of the classical
equations of motion (13.51).

The approach (13.52) with (13.51) is generally referred to as the testparticle	method and
allows for the dynamical simulations of many-particle systems in a time-dependent (self-
consistent) mean �ield U(r;t), which is built up by the two-particle interaction v(r − r2) in
(13.40).

As one can easily show, the Vlasov equation again conserves the particle number, the total
momentum and angular momentum as well as the total energy. However, relaxation phenomena
are not correctly described within the framework of (13.49), since these are dominantly based
on the 2-particle correlations neglected here.

13.6	 The	Uehling-Uhlenbeck	Collision	Term
While the derivation of the Vlasov equation in Sect. 13.5 was relatively easy to carry out, the
collision term in (13.20) requires to compute

(13.53)

or in a single-particle basis

(13.54)

s exp (− i
ħ p ⋅ s) = iħ ∇p exp (− i

ħ p ⋅ s)

∂
∂t

ρ(r, p;t) + p

m
⋅ ∇rρ(r, p;t) − ∇rU(r;t) ⋅ ∇pρ(r, p;t) = 0.

d
dt

ρ = 0 = { ∂
∂t

+ ṙ ⋅ ∇r + ṗ ⋅ ∇p} ρ(r, p;t),

ṙ = p

m
;ṗ = −∇rU(r;t).

ρt(r, p;t) = 1
A
∑N ⋅A

i=1 δ3(r − ri(t)) δ3(p − pi(t))

I(11′;t) := − i
ħ Tr(2=2′)[v(12), c2(12, 1′2′;t)]

Iαα′(t) = − i
ħ ∑β∑λγ{⟨αβ|v|λγ⟩Cλγα′β(t) − Cαβλγ(t)⟨λγ|v|α′β⟩},



i.e. the explicit knowledge of the 2-particle correlation function in an arbitrary basis |α⟩.
To calculate the 2-particle correlation function in leading order, we use a discrete basis in

which the single-particle Hamiltonian hαλ(t) and in particular ραα′(t) is diagonal, i.e.

(13.55)

In this basis the equation of motion for the expansion coef�icients Cαβα′β′(t) then reduces
according to (13.26) to (omitting the explicit time dependence of all quantities):

(13.56)

where we have taken advantage of the fact, that in this basis Q= is also diagonal

(13.57)

Equation (13.56) is a differential equation of �irst order in time that can be integrated
directly. With regards to approximations to be carried out later (within the framework of the
energy conservation in 2-particle collisions), we assume in the following, that in particular the
single-particle energies ϵα(t) ≈ ϵα are weakly varying functions of time.—This approximation is
particularly well or exactly ful�illed for the electron states in solids as well as for the single-
particle states in a suf�iciently large normalization volume.—For a vanishing homogeneous
solution of (13.56) Cαβα′β′(t) then is given by

(13.58)

as one can easily verify by insertion in (13.56).
For the diagonal element of the collision term (13.54) we obtain with (13.58)

(13.59)

hαλ(t) ≈ ϵα(t)δαλ;ραα′(t) = nα(t)δαα′ .

{iħ ∂
∂t − [ϵα + ϵβ − ϵα′ − ϵβ′ ]}Cαβα′β′(t)

= ∑λγ{⟨αβ|Q=v|λγ⟩(ρ20)λγα′β′ − (ρ20)αβλγ⟨λγ|vQ=|α′β′⟩}

= ⟨αβ|v|α′β′⟩A [nα′nβ′(1 − nα − nβ) − nαnβ(1 − nα′ − nβ′)]

=: ⟨αβ|VB(t)|α′β′⟩,

Q=
αβλγ = δαλδβγ[1 − nα − nβ].

Cαβα′β′(t) =

− i
ħ ∫

t

−∞ dt′ exp {− i
ħ [ϵα + ϵβ − ϵα′ − ϵβ′ ](t − t′)} ⋅ ⟨αβ|VB(t′)|α′β′⟩,

Iαα(t) = − i
ħ ∑β∑λγ{⟨αβ|v|λγ⟩Cλγαβ(t) − Cαβλγ(t)⟨λγ|v|αβ⟩}

= − 1
ħ2 ∑β∑λγ ∫

t

−∞ dt′{exp {− i
ħ [ϵλ + ϵγ − ϵα − ϵβ](t − t′)}

⋅⟨αβ|v|λγ⟩⟨λγ|VB(t′)|αβ⟩

− exp {− i
ħ [ϵα + ϵβ − ϵλ − ϵγ](t − t′)}⟨αβ|VB(t′)|λγ⟩⟨λγ|v|αβ⟩}

{



with n̄α(t′) = 1 − nα(t′) and VB(t′) from (13.56).
The further assumption is that the occupation numbers nα(t′) ≈ nα(t) are approximately

constant in time. In this case we can carry out the time integration in (13.59) for systems of low
density or weak residual interaction and get:

(13.60)

i.e. the energy conservation in the 2-body collisions.—Equation (13.60) implies that the time
between two subsequent collisions τs is large compared to the actual collision time τc, such that
the energy uncertainty associated to τs, i.e. Δϵ ≈ ħ/τs will be small.—For the diagonal elements
of the collision term we then get

(13.61)

in the basis |α⟩, in which the matrix ραα′  is diagonal.
We now evaluate (13.61) in the basis of plane waves |α⟩ ∼exp {ipα ⋅ r}, such that the

matrix ρ becomes diagonal in momentum space:

(13.62)

In (13.62) then n(p) has the physical interpretation of the occupation number of a plane
wave with wave number p (or momentum ħp).

Next, we assume for simplicity that the matrix elements of the interaction v in (13.61) are
independent of spin σ (and isospin τ) and in spatial representation given by:

(13.63)

or in momentum representation by

(13.64)

= 1
ħ2 ∑β∑λγ ∫

t

−∞ dt′ 2 cos { 1
ħ [ϵα + ϵβ − ϵλ − ϵγ](t − t′)}

⋅⟨αβ|v|λγ⟩⟨λγ|v|αβ⟩
A

[nλ(t′)nγ(t′)n̄α(t′)n̄β(t′) − nα(t′)nβ(t′)n̄λ(t′)n̄γ(t′)]

∫ t

−∞ dt′ cos ( 1
ħ [ϵα + ϵβ − ϵλ − ϵγ](t − t′)) ≈ ħπ δ(ϵα + ϵβ − ϵλ − ϵγ),

Iαα(t) ≈ 2π
ħ ∑β∑λγ δ(ϵα + ϵβ − ϵλ − ϵγ)⟨αβ|v|λγ⟩⟨λγ|v|αβ⟩

A

⋅[nλnγn̄αn̄β − nαnβn̄λn̄γ](t)

ρ(p, p′) = (2π)3
δ3(p − p′)n(p).

⟨r1r2σ1σ2τ1τ2|v|σ1′σ2′τ1′τ2′r1′r2′⟩

= δσ1σ1′δσ2σ2′δτ1τ1′δτ2τ2′

⋅δ3(r1 − r1′)δ3(r2 − r2′)v(r1 − r2),

⟨p1p2σ1σ2τ1τ2|v|σ1′σ2′τ1′τ2′p1′p2′⟩

= δσ1σ1′δσ2σ2′δτ1τ1′δτ2τ2′

⋅(2π)3
δ3(p1 + p2 − p1′ − p2′)v(p2 − p2′),



which expresses the conservation of momentum in the 2-body collision.
With these approximations we can evaluate (13.61) and obtain with ϵ(p) = ħ2/2m p2

(13.65)

Equation (13.65) describes scattering processes p1 + p2 → p3 + p4 (‘loss’ term) and 
p3 + p4 → p1 + p2 (‘gain’ term) with the conservation of energy and momentum (see
Fig. 13.1).

Fig.	13.1 Example of a collision process p1 + p2 → p3 + p4 in the center-of-mass system obeying the conservation of energy and
momentum

Furthermore, the momentum states p3, p4 (for the ‘loss’ terms) or p1, p2 (for the ‘gain’
terms) cannot be completely occupied due to the factors n̄(pi;t), which contain the Pauli
principle for fermions.

The factors (2s + 1) for the summation over the spin of particle 2 and (2τ + 1) for the
summation over the isospin (or other internal degrees of freedom) of particle 2 are summarized
in a factor g; in the case of electrons we have (s = 1/2, τ = 0) g = 2, while for nucleons we get 
(s = 1/2, τ = 1/2) g = 4 (in case of spin-isospin symmetry).

The connection with 2-particle scattering processes becomes immediately clear when we
link the product v ⋅ vA  with the differential cross section dσ/dΩ in Born	approximation (cf.
quantum theory),

(13.66)

which leads to

I(p1, p1;t) = 2π
ħ (2s + 1)(2τ + 1) 1

(2π)
9 ∫ d3p2d

3p3d
3p4

δ( ħ2

2m [p2
1 + p2

2 − p2
3 − p2

4])δ3(p1 + p2 − p3 − p4)(2π)6

δ3(p3 + p4 − p1 − p2)v(p2 − p4)vA (p4 − p2)

{n(p3;t)n(p4;t)n̄(p1;t)n̄(p2;t) − n(p1;t)n(p2;t)n̄(p3;t)n̄(p4;t)}.

dσ
dΩ

(p1 + p2, p2 − p4) = m2

(16π2ħ4)
v(p2 − p4)vA (p4 − p2),

2 3



(13.67)

where we have introduced the auxiliary variable p′
1 in one of the two δ-functions in the

momentum. Equation (13.67) can be simpli�ied further by integrating (after transformation to
relative and center of mass momenta) over the δ-functions in (13.67). With the magnitude of the
relative velocity

(13.68)

we �inally obtain

(13.69)

where Ω denotes the scattering angle in the center of mass system: it should be noted that
the momenta p3 and p4 are still linked to p1 and p2 via energy and momentum conservation!

The transition from the momentum-space representation examined here to the phase-space
representation (see Sect. 13.5) is now carried out by an inverse Wigner transformation,

(13.70)

with which we have reached the result for further applications.

In the case of thermodynamic equilibrium (for t → ∞), i.e. Icoll(p;t) → 0 for all p, the
Fermi distribution n(ϵ) (9. 1) satis�ies the necessary condition

(13.71)

and is thus the solution of (13.70) for Icoll = 0.

I(p1, p′
1;t) = (2π)3

δ3(p1 − p′
1)

16π2ħ3

m2

g

(2π)
5 ∫ d3p2d

3p3d
3p4

δ( ħ2

2m [p2
1 + p2

2 − p2
3 − p2

4]) δ3(p1 + p2 − p3 − p4) dσ
dΩ (p1 + p2, p2 − p4)

{n(p3;t)n(p4;t)n̄(p1;t)n̄(p2;t) − n(p1;t)n(p2;t)n̄(p3;t)n̄(p4;t)}

v12 =
ħ
m

|p1 − p2|

I(p1, p′
1;t) = (2π)3

δ3(p1 − p′
1) g

(2π)3 ∫ d3p2 ∫ dΩ v12
dσ
dΩ (p1 + p2, p2 − p4)

{n(p3;t)n(p4;t)n̄(p1;t)n̄(p2;t) − n(p1;t)n(p2;t)n̄(p3;t)n̄(p4;t)},

I(r, p;t) = 1

(2π)3 ∫ d3q exp {iq ⋅ r}I(p + q/2, p − q/2;t)

= ∫ d3q exp {iq ⋅ r}δ(q)Icoll(p;t) = Icoll(p;t)

= g

(2π)3 ∫ d3p2 ∫ dΩ v12
dσ
dΩ

(p1 + p2, p2 − p4)

{n(p3;t)n(p4;t)n̄(p1;t)n̄(p2;t) − n(p1;t)n(p2;t)n̄(p3;t)n̄(p4;t)},

{n(p3;t)n(p4;t)n̄(p1;t)n̄(p2;t) − n(p1;t)n(p2;t)n̄(p3;t)n̄(p4;t)} = 0



Proof With ϵ(p) = ħ2/2m p2 and the identity—valid for the Fermi distribution for all β and 
μ—

(13.72)

Equation (13.71) leads to the condition

(13.73)

which is equivalent to

(13.74)

This latter identity, however, is ful�illed according to (13.67) due to the energy conservation in a
2-particle collision. (i.e. δ(ϵ(p1) + ϵ(p2) − ϵ(p3) − ϵ(p4))), which proves the statement above.

13.7	 The	Vlasov-Uehling-Uhlenbeck	Equation
With the results of Sects. 13.5 and 13.6 we can now specify the semiclassical limit of Eq. (13.25)
in phase-space representation, if we identify n(p;t) with the local phase-space occupation
probability ρ(r, p;t) for suf�iciently extended systems. The combination of the Vlasov equation
(13.49) and the collision term Icoll (13.70) then yields the Vlasov-Uehling-Uhlenbeck (VUU)
equation, which is also known in the literature as Vlasov-Nordheim or Boltzmann-Uehling-
Uhlenbeck (BUU) equation,

(13.75)

which describes the time evolution of a system of fermions under the in�luence of a time-
dependent self-consistent mean �ield U(r;t) as well as energy and momentum conserving 2-
particle collisions. It serves as the starting point for various test-particle simulations in solid-
state, atomic and nuclear physics and has made a decisive contribution to our understanding of
the dynamics of Fermi systems far from equilibrium.

Remark: In the case of classical particles, (13.75) is simpli�ied in that the Pauli blocking
factors ρ̄(r, pi;t) = 1 are omitted as well as the antisymmetrization in the cross section (13.66).
The further approximation ∇rU(r;t) = 0 then yields the Boltzmann	equation 

(13.76)

n̄(ϵ) = 1 − n(ϵ) =
exp{β(ϵ−μ)}

1+exp{β(ϵ−μ)}

exp {β(ϵ(p1) − μ)} exp {β(ϵ(p2) − μ)}− exp {β(ϵ(p3) − μ)} exp {β(ϵ(p4) − μ) = 0,

exp {β(ϵ(p1) + ϵ(p2))} =exp {β(ϵ(p3) + ϵ(p4)}.

{ ∂
∂t + p1

m
⋅ ∇r − ∇rU(r, t) ⋅ ∇p1

}ρ(r, p1;t) = Icoll(r, p1;t)

=
g

(2π)3 ∫ d3p2 ∫ dΩ v12
dσ
dΩ (p1 + p2, p2 − p4)

{ρ(r, p3;t)ρ(r, p4;t)ρ̄(r, p1;t)ρ̄(r, p2;t)
−ρ(r, p1;t)ρ(r, p2;t)ρ̄(r, p3;t)ρ̄(r, p4;t)},

{ ∂
∂t

+ p1

m
⋅ ∇r}ρ(r, p1;t) = g

(2π)3 ∫ d3p2 ∫ dΩ v12
dσ
dΩ

(p1 + p2)

⋅{ρ(r, p3;t)ρ(r, p4;t) − ρ(r, p1;t)ρ(r, p2;t)},



which is used to describe the dynamics of a classical gas of particles.

13.8	 Collision	Rate,	Mean	Free	Path
In order to obtain an estimate for the time scales necessary to reach the equilibrium
con�iguration or statistical equilibrium, we consider the special case of a particle with
momentum p, which propagates in a suf�iciently (or in�initely) large and homogeneous Fermi
system, which is represented (for temperature T = 0) in momentum space by a Fermi sphere
with radius pF . Such a case can be realized experimentally by either shooting an electron on a
metallic solid or a proton on a large atomic nucleus such as Pb. The corresponding con�iguration
in momentum space is shown in Fig. 13.2.

Fig.	13.2 Example of the momentum space con�iguration when scattering a proton with momentum p on an ‘atomic nucleus’ with
Fermi momentum pF

Due to the homogeneity of the system, the phase-space density does not depend on the
position r and the change in the occupation number of the state with momentum p due to
collision processes of p with p2 is described by the loss	term

(13.77)

where the impact of the scattering processes on the system is neglected. Due to the linearity
of (13.77) in n(p;t) we can also write

(13.78)

with the collision	rate 

(13.79)

The quantity τr(p) is also called relaxation	time, since the solution of the differential
Eq. (13.78) with the boundary condition n(p;t = 0) = 1 is given by

d
dt

n(p;t) = −
g

(2π)3 ∫ d3p2 ∫ dΩ v12
dσ
dΩ (p + p2, p2 − p4)

n(p;t)n(p2)n̄(p3)n̄(p4),

d
dt

n(p;t) = − 1
τr(p)

n(p;t)

τr(p)−1 = g

(2π)3 ∫ d3p2 ∫ dΩ v12
dσ
dΩ (p + p2, p2 − p4)n(p2)n̄(p3)n̄(p4).

{



(13.80)

The relaxation time therefore indicates the time within which a single-particle state, that is not
occupied in thermodynamic equilibrium, decreases to the probability 1/e by scattering
processes.

Looking at Fig. 13.2 we immediately �ind that, due to the energy conservation in 2-particle
collisions at the temperature T = 0, the relaxation time τr(p) = ∞ for all p < pF  due to Pauli
blocking, i.e. despite possibly strong interactions the particles in the ground state cannot carry
out collisions! Only for p > pF  the allowed phase space opens up and the collision rate grows
quadratically (without proof) with the energy above the Fermi energy, i.e.

(13.81)

with ϵF = ħ2/2m p2
F . For p ≫ pF  the Pauli blocking �inally loses importance and we obtain the

classical result for the collision rate with v = p/m = ⟨v12⟩,

(13.82)

with the density ρ = g/(6π2)p3
F . In the classical limit,—as expected—the collision rate is

directly proportional to the relative velocity v, the total cross-section σ and the density ρ of the
system.

Using the relation (valid for homogeneous systems),

(13.83)

we obtain alternatively

(13.84)

with the mean	free	path 

(13.85)

for classical particles.
Without explicit proof, the comparable result for Bose systems should be mentioned: we set

in (13.75) ρ̄(r, p;t) = 1 + ρ(r, p;t), where ρ(r, p;t) in this case represents the phase-space
density of the bosons. In analogy to Eq. (13.71), the equilibrium solution then is the Bose
distribution (6. 13).

In summarizing this chapter, with the VUU equation (13.75) or the Boltzmann equation
(13.76) we have set the framework for the description of Fermi systems or classical particles far

n(p;t) =exp {− t
τr(p)

}.

τr(ϵ(p))−1 ∼
(ϵ(p)−ϵF )2

ϵ2
F

τr(p)−1 ≈
g

(2π)3 v ∫ d3p2 ∫ dΩ dσ
dΩ (p)n(p2)

= g

(2π)3 v ∫ d3p2 σ(p)n(p2) = v σ(p)ρ

d
dt

n(p;t) = v ⋅ ∂
∂r

n(p;r),

∂
∂r n(p;r) = − 1

λ(p)
n(p;r)

λ(p) = 1
σ(p)ρ



from equilibrium up to the thermodynamic equilibrium for t → ∞. The solution of these
equations can conveniently be achieved within the testparticle framework.
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